Suppr超能文献

利用苏格兰健康研究注册中心(SHARE)基于案例的推理,高效识别符合临床研究条件的患者。

Efficient identification of patients eligible for clinical studies using case-based reasoning on Scottish Health Research register (SHARE).

机构信息

School of Medicine, University of St. Andrews, North Haugh, St. Andrews, Scotland, KY16 9TF, UK.

School of Computer Science, University of St. Andrews, North Haugh, St. Andrews, Scotland, KY16 9SX, UK.

出版信息

BMC Med Inform Decis Mak. 2020 Apr 19;20(1):70. doi: 10.1186/s12911-020-1091-6.

Abstract

BACKGROUND

Trials often struggle to achieve their target sample size with only half doing so. Some researchers have turned to Electronic Health Records (EHRs), seeking a more efficient way of recruitment. The Scottish Health Research Register (SHARE) obtained patients' consent for their EHRs to be used as a searching base from which researchers can find potential participants. However, due to the fact that EHR data is not complete, sufficient or accurate, a database search strategy may not generate the best case-finding result. The current study aims to evaluate the performance of a case-based reasoning method in identifying participants for population-based clinical studies recruiting through SHARE, and assess the difference between its resultant cohort and the original one deriving from searching EHRs.

METHODS

A case-based reasoning framework was applied to 119 participants in nine projects using two-fold cross-validation, with records from a further 86,292 individuals used for testing. A prediction score for study participation was derived from the diagnosis, procedure, pharmaceutical prescription, and laboratory test results attributes of each participant. Evaluation was conducted by calculating Area Under the ROC Curve and information retrieval metrics for the ranking list of the test set by prediction score. We compared the most likely participants as identified by searching a database to those ranked highest by our model.

RESULTS

The average ROCAUC for nine projects was 81% indicating strong predictive ability for these data. However, the derived ranking lists showed lower predictive performance, with only 21% of the persons ranked within top 50 positions being the same as identified by searching databases.

CONCLUSIONS

Case-based reasoning is may be more effective than a database search strategy for participant identification for clinical studies using population EHRs. The lower performance of ranking lists derived from case-based reasoning means that patients identified as highly suitable for study participation may still not be recruited. This suggests that further study is needed into improvements in the collection and curation of population EHRs, such as use of free text data to aid reliable identification of people more likely to be recruited to clinical trials.

摘要

背景

临床试验往往难以达到其目标样本量,只有一半的试验能够做到这一点。一些研究人员转而使用电子健康记录(EHR),寻求更有效的招募方式。苏格兰健康研究登记处(SHARE)获得了患者的同意,将他们的 EHR 用于作为搜索基础,研究人员可以从中找到潜在的参与者。然而,由于 EHR 数据不完整、不充分或不准确,数据库搜索策略可能无法产生最佳的病例发现结果。本研究旨在评估基于病例的推理方法在通过 SHARE 招募基于人群的临床研究中识别参与者的性能,并评估其产生的队列与从 EHR 搜索中得出的原始队列之间的差异。

方法

使用两重交叉验证,将基于病例的推理框架应用于 119 名参与者的 9 个项目中,使用另外 86292 人的记录进行测试。从每个参与者的诊断、程序、药物处方和实验室测试结果属性中得出研究参与的预测分数。通过计算测试集预测分数排序列表的 ROC 曲线下面积和信息检索指标来进行评估。我们比较了通过搜索数据库确定的最有可能的参与者和我们模型确定的排名最高的参与者。

结果

九个项目的平均 ROCAUC 为 81%,表明这些数据具有很强的预测能力。然而,得出的排名列表显示出较低的预测性能,只有 21%的排在前 50 位的人是通过搜索数据库确定的。

结论

基于病例的推理方法可能比数据库搜索策略更有效,用于识别使用人群 EHR 的临床研究的参与者。基于病例的推理方法得出的排名列表的性能较低意味着被确定为非常适合研究参与的患者可能仍未被招募。这表明需要进一步研究如何改进人群 EHR 的收集和管理,例如使用自由文本数据来帮助更可靠地识别更有可能被招募到临床试验的人。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ab8/7169032/f665a061e23f/12911_2020_1091_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验