Suppr超能文献

用于低温化学链应用的钙替代A位或钴替代B位的锶铁氧体钙钛矿的结构和热力学研究

Structural and thermodynamic study of Ca A- or Co B-site substituted SrFeO perovskites for low temperature chemical looping applications.

作者信息

Luongo Giancarlo, Donat Felix, Müller Christoph R

机构信息

Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland.

出版信息

Phys Chem Chem Phys. 2020 May 6;22(17):9272-9282. doi: 10.1039/d0cp01049a.

Abstract

Perovskite-structured materials, owing to their chemical-physical properties and tuneable composition, have extended their range of applications to chemical looping processes, in which lattice oxygen provides the oxygen needed for chemical reactions omitting the use of co-fed gaseous oxidants. To optimise their oxygen donating behaviour to the specific application a fundamental understanding of the reduction/oxidation characteristics of perovskite structured oxides and their manipulation through the introduction of dopants is key. In this study, we investigate the structural and oxygen desorption/sorption properties of Sr1-xCaxFeO3-δ and SrFe1-xCoxO3-δ (0 ≤ x ≤ 1) to guide the design of more effective oxygen carriers for chemical looping applications at low temperatures (i.e. 400-600 °C). Ca A- or Co B-site substituted SrFeO3-δ show an increased reducibility, resulting in a higher oxygen capacity at T ≤ 600 °C when compared to the unsubstituted sample. The quantitative assessment of the thermodynamic properties (partial molar enthalpy and entropy of vacancy formation) confirms a reduced enthalpy of vacancy formation upon substitution in this temperature range (i.e. 400-600 °C). Among the examined samples, Sr0.8Ca0.2FeO3-δ exhibited the highest oxygen storage capacity (2.15 wt%) at 500 °C, complemented by excellent redox and structural stability over 100 cycles. The thermodynamic assessment, supported by in situ XRD measurements, revealed that the oxygen release occurs with a phase transition perovskite-brownmillerite below 770 °C, while the perovskite structure remains stable above 770 °C.

摘要

钙钛矿结构材料因其化学物理性质和可调节的组成,已将其应用范围扩展到化学循环过程中,在该过程中,晶格氧提供化学反应所需的氧,无需使用共进料气态氧化剂。为了针对特定应用优化其氧供行为,深入了解钙钛矿结构氧化物的还原/氧化特性以及通过引入掺杂剂对其进行调控是关键。在本研究中,我们研究了Sr1-xCaxFeO3-δ和SrFe1-xCoxO3-δ(0≤x≤1)的结构和氧脱附/吸附性能,以指导设计用于低温(即400 - 600°C)化学循环应用的更有效的氧载体。Ca A位或Co B位取代的SrFeO3-δ显示出更高的还原性,与未取代的样品相比,在T≤600°C时具有更高的氧容量。对热力学性质(空位形成的偏摩尔焓和熵)的定量评估证实,在该温度范围(即400 - 600°C)内取代后空位形成焓降低。在所研究的样品中,Sr0.8Ca0.2FeO3-δ在500°C时表现出最高的储氧容量(2.15 wt%),并在100次循环中具有出色的氧化还原和结构稳定性。由原位XRD测量支持的热力学评估表明,在770°C以下,氧释放伴随着钙钛矿-褐铁矿的相变发生,而在770°C以上钙钛矿结构保持稳定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验