Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518083, China.
China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China.
Theranostics. 2020 Apr 6;10(11):5137-5153. doi: 10.7150/thno.42325. eCollection 2020.
: is one of the most frequently mutated oncogenes in cancers. The protein's picomolar affinity for GTP/GDP and smooth protein structure resulting in the absence of known allosteric regulatory sites makes its genomic-level activating mutations a difficult but attractive target. : Two CRISPR systems, genome-editing CRISPR/SpCas9 and transcription-regulating dCas9-KRAB, were developed to deplete the G12S mutant allele or repress its transcription, respectively, with the goal of treating -driven cancers. : SpCas9 and dCas9-KRAB systems with a sgRNA targeting the mutant allele blocked the expression of the mutant gene, leading to an inhibition of cancer cell proliferation. Local adenoviral injections using SpCas9 and dCas9-KRAB systems suppressed tumor growth . The gene-depletion system (SpCas9) performed more effectively than the transcription-suppressing system (dCas9-KRAB) on tumor inhibition. Application of both Cas9 systems to wild-type tumors did not affect cell proliferation. Furthermore, through bioinformatic analysis of 31555 SNP mutations of the top 20 cancer driver genes, the data showed that our mutant-specific editing strategy could be extended to a reference list of oncogenic mutations with high editing potentials. This pipeline could be applied to analyze the distribution of PAM sequences and survey the best alternative targets for gene editing. : We successfully developed both gene-depletion and transcription-suppressing systems to specifically target an oncogenic mutant allele that led to significant tumor regression. These findings show the potential of CRISPR-based strategies for the treatment of tumors with driver gene mutations.
是癌症中最常发生突变的致癌基因之一。该蛋白对 GTP/GDP 的皮摩尔亲和力和光滑的蛋白质结构导致缺乏已知的变构调节位点,使得其基因组水平的激活突变成为一个困难但有吸引力的靶标。
两种 CRISPR 系统,基因组编辑 CRISPR/SpCas9 和转录调控 dCas9-KRAB,分别被开发用于耗尽 G12S 突变等位基因或抑制其转录,以治疗由驱动的癌症。靶向突变等位基因的 sgRNA 的 SpCas9 和 dCas9-KRAB 系统阻断了突变基因的表达,导致癌细胞增殖受到抑制。使用 SpCas9 和 dCas9-KRAB 系统的局部腺病毒注射抑制了肿瘤生长。基因耗竭系统(SpCas9)在抑制肿瘤方面比转录抑制系统(dCas9-KRAB)更有效。两种 Cas9 系统在野生型肿瘤中的应用均未影响细胞增殖。此外,通过对前 20 个癌症驱动基因的 31555 个 SNP 突变的生物信息学分析,数据表明,我们的突变特异性编辑策略可以扩展到具有高编辑潜力的致癌突变参考列表。该流水线可用于分析 PAM 序列的分布,并调查基因编辑的最佳替代靶标。
我们成功开发了基因耗竭和转录抑制系统,以专门针对导致显著肿瘤消退的致癌突变等位基因。这些发现表明基于 CRISPR 的策略在治疗具有驱动基因突变的肿瘤方面具有潜力。