Cancer Genes and Genomes Unit, Cancer Research Institute, Kanazawa University, 920-1192 Kanazawa, Ishikawa, Japan;
Cancer Genes and Genomes Unit, Cancer Research Institute, Kanazawa University, 920-1192 Kanazawa, Ishikawa, Japan.
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15635-15644. doi: 10.1073/pnas.1904714116. Epub 2019 Jul 12.
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Several genome sequencing studies have provided comprehensive CRC genomic datasets. Likewise, in our previous study, we performed genome-wide transposon-based mutagenesis screening in mice and provided comprehensive datasets of candidate CRC driver genes. However, functional validation for most candidate CRC driver genes, which were commonly identified from both human and mice, has not been performed. Here, we describe a platform for functionally validating CRC driver genes that utilizes CRISPR-Cas9 in mouse intestinal tumor organoids and human CRC-derived organoids in xenograft mouse models. We used genetically defined benign tumor-derived organoids carrying 2 frequent gene mutations ( and mutations), which act in the early stage of CRC development, so that we could clearly evaluate the tumorigenic ability of the mutation in a single gene. These studies showed that , , and could function as tumor suppressor genes (TSGs) in CRC and uncovered a role for in tumor metastasis. We also showed that co-occurrent mutations in receptors for activin and transforming growth factor-β (TGF-β) synergistically promote tumorigenesis, and shed light on the role of activin receptors in CRC. This experimental system can also be applied to mouse intestinal organoids carrying other sensitizing mutations as well as organoids derived from other organs, which could further contribute to identification of novel cancer driver genes and new drug targets.
结直肠癌(CRC)是全球癌症相关死亡的第三大主要原因。几项基因组测序研究提供了全面的 CRC 基因组数据集。同样,在我们之前的研究中,我们在小鼠中进行了基于转座子的全基因组诱变筛选,并提供了候选 CRC 驱动基因的全面数据集。然而,大多数候选 CRC 驱动基因(这些基因通常是从人和小鼠中共同鉴定出来的)的功能验证尚未进行。在这里,我们描述了一种利用 CRISPR-Cas9 在小鼠肠肿瘤类器官和异种移植小鼠模型中的人 CRC 衍生类器官中验证 CRC 驱动基因的平台。我们使用遗传定义的良性肿瘤衍生类器官,这些类器官携带 2 个常见的基因突变( 和 突变),这些突变作用于 CRC 发展的早期阶段,因此我们可以在单个基因中清楚地评估突变的致瘤能力。这些研究表明 , ,和 可以作为 CRC 中的肿瘤抑制基因(TSGs),并揭示了 在肿瘤转移中的作用。我们还表明,激活素和转化生长因子-β(TGF-β)受体的共发突变协同促进肿瘤发生,并阐明了激活素受体在 CRC 中的作用。该实验系统还可以应用于携带其他致敏突变的小鼠肠类器官以及源自其他器官的类器官,这可以进一步有助于鉴定新的癌症驱动基因和新的药物靶点。