Suppr超能文献

一种基于电子健康记录的实用血液透析患者干体重监测模型

A Practical Electronic Health Record-Based Dry Weight Supervision Model for Hemodialysis Patients.

作者信息

Bi Zhaori, Wang Mengjing, Ni Li, Ye Guoxin, Zhou Dian, Yan Changhao, Zeng Xuan, Chen Jing

机构信息

1National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghai200040China.

2Division of Nephrology, Huashan HospitalFudan UniversityShanghai200040China.

出版信息

IEEE J Transl Eng Health Med. 2019 Oct 24;7:4200109. doi: 10.1109/JTEHM.2019.2948604. eCollection 2019.

Abstract

: Dry Weight (DW) is a typical hemodialysis (HD) prescription for End-Stage Renal Disease (ESRD) patients. However, an accurate DW assessment is difficult due to the complication of body components and individual variations. Our objective is to model a clinically practicable DW estimator. : We proposed a time series-based regression method to evaluate the weight fluctuation of HD patients according to Electronic Health Record (EHR). A total of 34 patients with 5100 HD sessions data were selected and partitioned into three groups; in HD-stabilized, HD-intolerant, and near-death. Each group's most recent 150 HD sessions data were adopted to evaluate the proposed model. : Within a 0.5 kg absolute error margin, our model achieved 95.44%, 91.95%, and 83.12% post-dialysis weight prediction accuracies for the HD-stabilized, HD-intolerant, and near-death groups, respectively. Within a 1%relative error margin, the proposed method achieved 97.99%, 95.36%, and 66.38% accuracies. For HD-stabilized patients, the Mean Absolute Error (MAE) of the proposed method was 0.17 kg ± 0.04 kg. In the model comparison experiment, the performance test showed that the quality of the proposed model was superior to those of the state-of-the-art models. : The outcome of this research indicates that the proposed model could potentially automate the clinical weight management for HD patients. : This work can aid physicians to monitor and estimate DW. It can also be a health risk indicator for HD patients.

摘要

干体重(DW)是终末期肾病(ESRD)患者典型的血液透析(HD)处方。然而,由于身体成分的复杂性和个体差异,准确评估干体重具有一定难度。我们的目标是建立一个临床可行的干体重估计模型。

我们提出了一种基于时间序列的回归方法,根据电子健康记录(EHR)评估血液透析患者的体重波动情况。总共选取了34例患者的5100次血液透析数据,并将其分为三组:血液透析稳定组、不耐受血液透析组和濒死组。采用每组最近的150次血液透析数据来评估所提出的模型。

在绝对误差范围为0.5kg时,我们的模型对血液透析稳定组、不耐受血液透析组和濒死组的透析后体重预测准确率分别达到了95.44%、91.95%和83.12%。在相对误差范围为1%时,所提出的方法准确率分别达到了97.99%、95.36%和66.38%。对于血液透析稳定的患者,所提出方法的平均绝对误差(MAE)为0.17kg±0.04kg。在模型比较实验中,性能测试表明所提出模型的质量优于现有最先进的模型。

本研究结果表明,所提出的模型有可能实现血液透析患者临床体重管理的自动化。

这项工作有助于医生监测和估计干体重,也可作为血液透析患者的健康风险指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db10/6850034/771e7c815e2d/bi1-2948604.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验