Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China.
Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China.
Comput Methods Programs Biomed. 2021 Nov;212:106458. doi: 10.1016/j.cmpb.2021.106458. Epub 2021 Oct 9.
The number of end-stage renal disease (ESRD) patients treated with hemodialysis (HD) has significantly increased, but the prognosis remains poor. Time-series features have been included in only a few studies to predict HD patient survival, and how to utilize such features effectively remains unclear. This article aims to develop a more accurate, interpretable, and clinically practical personalized survival prediction model for HD patients.
This study proposed and evaluated an attention-based Bi-GRU network using time-series features for survival prediction. A distance-based loss function was proposed to improve performance. We used data from 1232 ESRD patients who received regular hemodialysis treatment for ≥ 3 months from 2007 to 2016 at the First Affiliated Hospital of Zhejiang University. The proposed model was compared with representative sequence modeling deep learning architectures and existing survival analysis methods in terms of the C-index and IBS value. Post hoc tests were used to test statistical significance. The attention map was used to assess feature importance over time. The impact of time-series changes on survival was investigated after controlling initial values (using BMI as an example).
The proposed method outperformed other sequence modeling architectures and the state-of-the-art survival analysis approaches in terms of the C-index and the integrated Brier score (IBS) value. Our method achieved a C-index of 0.7680 (95% confidence intervals [CI]: 0.7645, 0.7716) and an IBS of 0.1302 (95% confidence intervals [CI]: 0.1292, 0.1313), showing an improvement of up to 5.4% in terms of the C-index and a decrease of 3.2% in terms of the IBS value. The addition of the distance-based loss function improved the performance. The predicted risk and actual risk levels closely agreed. This study also found that even after controlling the initial body mass index (BMI) values, different 3-month BMI trends could produce different survival outcomes.
This study proposed a more effective and interpretable method to use time-series information in survival analysis. The proposed method may help promote personalized medicine and improve patient prognosis.
接受血液透析(HD)治疗的终末期肾病(ESRD)患者数量显著增加,但预后仍然较差。仅有少数研究纳入时间序列特征来预测 HD 患者的生存情况,如何有效地利用这些特征仍不清楚。本文旨在为 HD 患者开发一种更准确、可解释且更符合临床实际的个性化生存预测模型。
本研究提出并评估了一种基于注意力的 Bi-GRU 网络,该网络使用时间序列特征进行生存预测。提出了一种基于距离的损失函数来提高性能。我们使用了 2007 年至 2016 年期间在浙江大学第一附属医院接受常规血液透析治疗≥3 个月的 1232 名 ESRD 患者的数据。在所提出的模型中,我们将其与代表性的序列建模深度学习架构和现有的生存分析方法在 C 指数和 IBS 值方面进行了比较。使用后验检验测试统计显著性。使用注意力图评估随时间推移的特征重要性。在控制初始值后(以 BMI 为例),研究了时间序列变化对生存的影响。
在所提出的方法中,C 指数和综合 Brier 得分(IBS)值均优于其他序列建模架构和最先进的生存分析方法。我们的方法的 C 指数为 0.7680(95%置信区间[CI]:0.7645,0.7716),IBS 为 0.1302(95%置信区间[CI]:0.1292,0.1313),C 指数提高了 5.4%,IBS 值降低了 3.2%。加入基于距离的损失函数提高了性能。预测风险和实际风险水平非常吻合。本研究还发现,即使在控制初始体重指数(BMI)值后,不同的 3 个月 BMI 趋势也可能产生不同的生存结果。
本研究提出了一种更有效的、可解释的方法来在生存分析中使用时间序列信息。所提出的方法可能有助于促进个性化医疗并改善患者预后。