Suppr超能文献

基于神经外科重症监护病房资料的急性肾损伤预测列线图

An acute kidney injury prediction nomogram based on neurosurgical intensive care unit profiles.

作者信息

An Shuo, Luo Hongliang, Wang Jiao, Gong Zhitao, Tian Ye, Liu Xuanhui, Ma Jun, Jiang Rongcai

机构信息

Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.

Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin 300052, China.

出版信息

Ann Transl Med. 2020 Mar;8(5):194. doi: 10.21037/atm.2020.01.60.

Abstract

BACKGROUND

Acute kidney injury (AKI) is a common and serious complication with high mortality within the neural-critical care unit, and can limit the treatment of osmotic diuresis and body fluid equilibrium. Given its seriousness, it is necessary to find a tool to predict the likelihood of AKI and to prevent its occurrence.

METHODS

In this retrospective study, patients' clinical profiles, laboratory test results, and doctors' prescriptions were collected. Least absolute shrinkage and selection operator (LASSO) regression was used to select variables, and a logistic regression model was then applied to find independent risk factors for AKI. Based on the results of multivariate analysis, we established a nomogram to evaluate the probability of AKI, which was verified through the use of a receiver operating characteristic (ROC) curve and its calibration curves.

RESULTS

Risk factors given by logistic regression were Glasgow Coma Scale (GCS) classification (1.593; 95% CI: 0.995-2.549; P=0.0523), coefficient of variation (CV) of GCS (1.017; 95% CI: 0.995-1.04; P=0.1367), hypertension (2.238; 95% CI: 1.124-4.456; P=0.0219), coronary heart disease (2.924; 95% CI: 1.2-7.126; P=0.0182), pneumonia within 7 days (3.032; 95% CI: 1.511-6.085; P=0.0018), heart failure within 7 days (6.589; 95% CI: 2.235-19.42; P=0.0006), furosemide (1.011; 95% CI: 1.005-1.016; P<0.0001), torasemide (1.028; 95% CI: 0.976-1.082; P=0.297), dopamine (1; 95% CI: 1-1.001, P=0.3297), and norepinephrine (1.007; 95% CI: 1-1.015; P=0.0474). The area under the curve (AUC) of the prediction model was 0.8786, and the calibration curves showed that the model had a good ability to predict AKI occurrence.

CONCLUSIONS

This study presents an AKI prediction nomogram based on LASSO, logistic regression, and clinical risk factors. The clinical use of the nomogram may allow for the timely detection of AKI occurrence and thus improve the prognosis of patients.

摘要

背景

急性肾损伤(AKI)是神经重症监护病房常见且严重的并发症,死亡率高,会限制渗透性利尿治疗和体液平衡。鉴于其严重性,有必要找到一种工具来预测AKI发生的可能性并预防其发生。

方法

在这项回顾性研究中,收集了患者的临床资料、实验室检查结果和医生处方。采用最小绝对收缩和选择算子(LASSO)回归选择变量,然后应用逻辑回归模型寻找AKI的独立危险因素。基于多变量分析结果,我们建立了一个列线图来评估AKI的发生概率,并通过使用受试者工作特征(ROC)曲线及其校准曲线进行验证。

结果

逻辑回归给出的危险因素包括格拉斯哥昏迷量表(GCS)分级(1.593;95%置信区间:0.995 - 2.549;P = 0.0523)、GCS的变异系数(CV)(1.017;95%置信区间:0.995 - 1.04;P = 0.1367)、高血压(2.238;95%置信区间:1.124 - 4.456;P = 0.0219)、冠心病(2.924;95%置信区间:1.2 - 7.126;P = 0.0182)、7天内肺炎(3.032;95%置信区间:1.511 - 6.085;P = 0.0018)、7天内心力衰竭(6.589;95%置信区间:2.235 - 19.42;P = 0.0006)、呋塞米(1.011;95%置信区间:1.005 - 1.016;P < 0.0001)、托拉塞米(1.028;95%置信区间:0.976 - 1.082;P = 0.297)、多巴胺(1;95%置信区间:1 - 1.001,P =

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f47/7154440/827508fa61a7/atm-08-05-194-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验