Pillai Vishnu V, Lonkar Sunil P, Alhassan Saeed M
Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE.
ACS Omega. 2020 Mar 31;5(14):7969-7978. doi: 10.1021/acsomega.9b04409. eCollection 2020 Apr 14.
Nanosized sulfur-doped titanium dioxide emerged as an attractive photocatalyst in various environmental remediation applications, yet most synthesis methods require hazardous sulfurizing agents and intricate synthesis procedures. Herein, we present a facile, sustainable, and environmentally friendly preparation process for the production of visible-light-active meso-macroporous sulfur-doped anatase TiO (S-TiO) nanoparticles for the first time. This strategy encompasses solventless mixing of titanium salt and surfeit yet nontoxic abundant elemental sulfur under continuous ball milling and moderate thermoannealing. The characterizations of as-obtained S-TiO nanoparticles showed enhanced physicochemical properties including distinctive surface features composed of hierarchical hollow macroporous channels having nanostructured mesoporous core walls. The annealing temperature was observed to control the structure and extent of sulfur doping in TiO. Upon insertion of a sulfur atom into the TiO lattice, the band gap energy of S-TiO was significantly lowered, facilitating the enhanced photochemical activity. Owing to the effective S doping (1.7-2.8 atom %), and the interconnected hollow meso-macroporous nanostructure, the resulting nanosized S-TiO exhibited unique adsorption properties and superior photocatalytic efficiency for the rapid degradation of hazardous organic dyes and phenols for water remediation. The presented strategy holds high potential to provide rapid production of a hierarchical and highly porous S-TiO photocatalyst on a large scale for various environmental remediation and other myriad photochemical applications.
纳米级硫掺杂二氧化钛在各种环境修复应用中成为一种有吸引力的光催化剂,然而大多数合成方法需要危险的硫化剂和复杂的合成程序。在此,我们首次提出了一种简便、可持续且环境友好的制备方法,用于生产可见光活性的介观大孔硫掺杂锐钛矿型TiO(S-TiO)纳米颗粒。该策略包括在连续球磨和适度热退火条件下,将钛盐与过量但无毒的丰富元素硫进行无溶剂混合。对所得S-TiO纳米颗粒的表征显示出其物理化学性质得到增强,包括由具有纳米结构介孔芯壁的分级中空大孔通道组成的独特表面特征。观察到退火温度可控制TiO中硫掺杂的结构和程度。在将硫原子插入TiO晶格后,S-TiO的带隙能量显著降低,促进了光化学活性的增强。由于有效的S掺杂(1.7 - 2.8原子%)以及相互连接的中空介观大孔纳米结构,所得的纳米级S-TiO表现出独特的吸附性能和优异的光催化效率,可快速降解用于水修复的有害有机染料和酚类。所提出的策略具有很大的潜力,能够大规模快速生产用于各种环境修复和其他众多光化学应用的分级且高度多孔的S-TiO光催化剂。