Kumari Priyanka, Kumar Sudhir, Kaur Kohinoor, Gupta Umesh Datta, Bhagyawant Sameer Suresh, Tyagi Jaya Sivaswami
National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India.
School of Studies in Biotechnology, Jiwaji University, Gwalior, India.
Biochem J. 2020 May 15;477(9):1669-1682. doi: 10.1042/BCJ20200113.
The DevR-DevS/DosR-DosS two-component system of Mycobacterium tuberculosis, that comprises of DevS sensor kinase and DevR response regulator, is essential for bacterial adaptation to hypoxia by inducing dormancy regulon expression. The dominant phosphatase activity of DevS under aerobic conditions enables tight negative control, whereas its kinase function activates DevR under hypoxia to induce the dormancy regulon. A net balance in these opposing kinase and phosphatase activities of DevS calibrates the response output of DevR. To gain mechanistic insights into the kinase-phosphatase balance of DevS, we generated alanine substitution mutants of five residues located in DHp α1 helix of DevS, namely Phe-403, Gly-406, Leu-407, Gly-411 and His-415. For the first time, we have identified kinase positive phosphatase negative (K+P-) mutants in DevS by a single-site mutation in either Gly-406 or Leu-407. M. tuberculosis Gly-406A and Leu-407A mutant strains constitutively expressed the DevR regulon under aerobic conditions despite the presence of negative signal, oxygen. These mutant proteins exhibited ∼2-fold interaction defect with DevR. We conclude that Gly-406 and Leu-407 residues are individually essential for the phosphatase function of DevS. Our study provides new insights into the negative control mechanism of DevS by demonstrating the importance of an optimal interaction between DevR and DevS, and local changes associated with individual residues, Gly-406 and Leu-407, which mimic ligand-free DevS. These K+P- mutant strains are expected to facilitate the rapid aerobic screening of DevR antagonists in M. tuberculosis, thereby eliminating the requirement for hypoxic culture conditions.
结核分枝杆菌的DevR-DevS/DosR-DosS双组分系统由DevS传感激酶和DevR反应调节因子组成,通过诱导休眠调节子表达,对细菌适应缺氧至关重要。在有氧条件下,DevS的主要磷酸酶活性实现了严格的负调控,而其激酶功能在缺氧条件下激活DevR以诱导休眠调节子。DevS这些相反的激酶和磷酸酶活性之间的净平衡校准了DevR的反应输出。为了深入了解DevS的激酶-磷酸酶平衡机制,我们生成了位于DevS的DHpα1螺旋中的五个残基的丙氨酸替代突变体,即Phe-403、Gly-406、Leu-407、Gly-411和His-415。我们首次通过对Gly-406或Leu-407中的单个位点突变,在DevS中鉴定出激酶阳性磷酸酶阴性(K+P-)突变体。尽管存在负信号氧气,但结核分枝杆菌Gly-406A和Leu-407A突变株在有氧条件下仍组成性表达DevR调节子。这些突变蛋白与DevR的相互作用缺陷约为2倍。我们得出结论,Gly-406和Leu-407残基对于DevS的磷酸酶功能各自都是必不可少的。我们的研究通过证明DevR和DevS之间最佳相互作用的重要性,以及与单个残基Gly-406和Leu-407相关的局部变化(模拟无配体的DevS),为DevS的负调控机制提供了新的见解。这些K+P-突变株有望促进结核分枝杆菌中DevR拮抗剂的快速有氧筛选,从而消除对缺氧培养条件的需求。