Suppr超能文献

用于体外构建血管化骨样结构的多组分水凝胶。

Multicomponent hydrogels for the formation of vascularized bone-like constructs in vitro.

机构信息

Institute of Bioengineering, Queen Mary University of London, E1 4NS London, UK; School of Engineering and Materials Science, Queen Mary University of London, E1 4NS London, UK; Biomedical Engineering Department, Faculty of Engineering, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey; Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey.

Institute of Bioengineering, Queen Mary University of London, E1 4NS London, UK; School of Engineering and Materials Science, Queen Mary University of London, E1 4NS London, UK.

出版信息

Acta Biomater. 2020 Jun;109:82-94. doi: 10.1016/j.actbio.2020.03.025. Epub 2020 Apr 18.

Abstract

The native extracellular matrix (ECM) is a complex gel-like system with a broad range of structural features and biomolecular signals. Hydrogel platforms that can recapitulate the complexity and signaling properties of this ECM would have enormous impact in fields ranging from tissue engineering to drug discovery. Here, we report on the design, synthesis, and proof-of-concept validation of a microporous and nanofibrous hydrogel exhibiting multiple bioactive epitopes designed to recreate key features of the bone ECM. The material platform integrates self-assembly with orthogonal enzymatic cross-linking to create a supramolecular environment comprising hyaluronic acid modified with tyramine (HA-Tyr) and peptides amphiphiles (PAs) designed to promote cell adhesion (RGDS-PA), osteogenesis (Osteo-PA), and angiogenesis (Angio-PA). Through individual and co-cultures of human adipose derived mesenchymal stem cells (hAMSCs) and human umbilical vascular endothelial cells (HUVECs), we confirmed the capacity of the HA-Tyr/RGDS-PA/Osteo-PA/Angio-PA hydrogel to promote cell adhesion as well as osteogenic and angiogenic differentiation in both 2D and 3D setups. Furthermore, using immunofluorescent staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), we demonstrated co-differentiation and organization of hAMSCs and HUVECs into 3D aggregates resembling vascularized bone-like constructs. STATEMENT OF SIGNIFICANCE: This body of work presents a new approach to develop more complex, yet functional, in vitro environments for cell culture while enabling a high level of control, tuneability, and reproducibility. The multicomponent self-assembling bioactive 2D and 3D hydrogels with nanofibrous architecture designed to recreate key molecular and macromolecular features of the native bone ECM and promote both osteogenesis and angiogenesis. The materials induce endothelial cells towards large vascular lumens and MSCs into bone cells on/within the same platform and form vascularized-bone like construct in vitro. This strategy looks encouraging for lifelike bone tissue engineering in vitro and bone tissue regeneration in vivo.

摘要

天然细胞外基质 (ECM) 是一种具有广泛结构特征和生物分子信号的复杂凝胶状系统。能够再现这种 ECM 的复杂性和信号特性的水凝胶平台将在从组织工程到药物发现的各个领域产生巨大影响。在这里,我们报告了一种具有微孔和纳米纤维结构的水凝胶的设计、合成和概念验证,该水凝胶展示了多个设计用于再现骨 ECM 关键特征的生物活性表位。该材料平台将自组装与正交酶交联结合,创建了一个包含透明质酸修饰的酪胺 (HA-Tyr) 和肽两亲物 (PAs) 的超分子环境,这些物质可促进细胞黏附 (RGDS-PA)、成骨 (Osteo-PA) 和血管生成 (Angio-PA)。通过人脂肪间充质干细胞 (hAMSCs) 和人脐静脉内皮细胞 (HUVECs) 的单独和共培养,我们证实了 HA-Tyr/RGDS-PA/Osteo-PA/Angio-PA 水凝胶在 2D 和 3D 环境中促进细胞黏附以及成骨和血管生成分化的能力。此外,通过免疫荧光染色和逆转录定量聚合酶链反应 (RT-qPCR),我们证明了 hAMSCs 和 HUVECs 能够共分化并组织成类似于血管化骨样结构的 3D 聚集体。 意义声明:这项工作提出了一种新方法来开发更复杂但功能更强大的细胞培养体外环境,同时实现高水平的控制、可调性和可重复性。这种具有纳米纤维结构的多组分自组装生物活性 2D 和 3D 水凝胶旨在再现天然骨 ECM 的关键分子和大分子特征,并促进成骨和血管生成。这些材料诱导内皮细胞形成大的血管腔,诱导间充质干细胞在同一平台上形成骨细胞,并在体外形成血管化骨样结构。这种策略有望在体外逼真的骨组织工程和体内骨组织再生方面取得成功。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验