Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
Talanta. 2020 Aug 1;215:120791. doi: 10.1016/j.talanta.2020.120791. Epub 2020 Jan 28.
Wearable biosensors are of great interest in recent years due to their potential in health related applications. Multiplex biomarker analysis is needed in wearable devices to improve the sensitivity and reliability. Electronic barcoding of micro-particles has the possibility to enable multiplexed biomarker analysis. Compared with traditional optical and plasmonic methods for barcoding, electronically barcoded particles can be classified using ultra-compact electronic readout platforms. Nano-electronic barcoding works by depositing a thin layer of oxide on the top half of a micro-particle. The thickness and dielectric property of the oxide layer can be tuned to modulate the frequency dependent impedance signature of the particles. A one to one correspondence between a target biomarker and each barcoded particle can potentially be established using this technique. The barcoded particles could be tested with wearable devices to enable multiplex analysis for portable point-of-care diagnostics and real-time monitoring. In this work, we fabricated nine barcoded particles by forming oxide layers of different thicknesses and different dielectric materials using atomic layer deposition and assessed the ability to accurately classify particle barcodes using multi-frequency impedance cytometry in conjunction with supervised machine learning.
近年来,由于在健康相关应用方面的潜力,可穿戴生物传感器受到了极大的关注。为了提高可穿戴设备的灵敏度和可靠性,需要对多种生物标志物进行分析。电子标记微粒子具有实现多重生物标志物分析的可能性。与传统的光学和等离子体标记方法相比,电子标记的粒子可以使用超紧凑的电子读出平台进行分类。纳米电子标记的工作原理是在微粒子的上半部分沉积一层薄的氧化物。通过调整氧化物层的厚度和介电特性,可以调制粒子的频率相关阻抗特征。通过这项技术,有可能在目标生物标志物和每个标记的粒子之间建立一对一的对应关系。可以使用这些标记的粒子对可穿戴设备进行测试,从而实现便携式即时诊断和实时监测的多重分析。在这项工作中,我们使用原子层沉积技术形成了不同厚度和不同介电材料的氧化物层,制造了 9 个标记的粒子,并评估了使用多频阻抗细胞术结合监督机器学习准确分类粒子条形码的能力。