School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602, USA.
Sci Rep. 2023 Mar 23;13(1):4744. doi: 10.1038/s41598-023-31694-6.
Multiplexed detection of biomarkers in real-time is crucial for sensitive and accurate diagnosis at the point of use. This scenario poses tremendous challenges for detection and identification of signals of varying shape and quality at the edge of the signal-to-noise limit. Here, we demonstrate a robust target identification scheme that utilizes a Deep Neural Network (DNN) for multiplex detection of single particles and molecular biomarkers. The model combines fast wavelet particle detection with Short-Time Fourier Transform analysis, followed by DNN identification on an AI-specific edge device (Google Coral Dev board). The approach is validated using multi-spot optical excitation of Klebsiella Pneumoniae bacterial nucleic acids flowing through an optofluidic waveguide chip that produces fluorescence signals of varying amplitude, duration, and quality. Amplification-free 3× multiplexing in real-time is demonstrated with excellent specificity, sensitivity, and a classification accuracy of 99.8%. These results show that a minimalistic DNN design optimized for mobile devices provides a robust framework for accurate pathogen detection using compact, low-cost diagnostic devices.
实时对生物标志物进行多重检测对于在使用点进行敏感和准确的诊断至关重要。这种情况下,在信号噪声极限的边缘,对不同形状和质量的信号进行检测和识别极具挑战性。在这里,我们展示了一种稳健的目标识别方案,该方案利用深度神经网络(DNN)对单粒子和分子生物标志物进行多重检测。该模型结合了快速小波粒子检测和短时傅里叶变换分析,然后在 AI 专用边缘设备(Google Coral Dev 板)上进行 DNN 识别。该方法通过多斑点光激发流经光流芯片的肺炎克雷伯氏菌细菌核酸来验证,该芯片产生幅度、持续时间和质量不同的荧光信号。实时无扩增 3×多重检测具有出色的特异性、灵敏度和 99.8%的分类准确性。这些结果表明,针对移动设备进行了优化的极简 DNN 设计为使用紧凑、低成本的诊断设备进行准确的病原体检测提供了一个稳健的框架。