Cerón-Rojas J Jesus, Crossa Jose
Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, México City, México and.
Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, México City, México and
G3 (Bethesda). 2020 Jun 1;10(6):2087-2101. doi: 10.1534/g3.120.401171.
A combined multistage linear genomic selection index (CMLGSI) is a linear combination of phenotypic and genomic estimated breeding values useful for predicting the individual net genetic merit, which in turn is a linear combination of the true unobservable breeding values of the traits weighted by their respective economic values. The CMLGSI is a cost-saving strategy for improving multiple traits because the breeder does not need to measure all traits at each stage. The (OCMLGSI) and (DCMLGSI) indices are the main CMLGSIs. Whereas the OCMLGSI takes into consideration the index correlation values among stages, the DCMLGSI imposes the restriction that the index correlation values among stages be zero. Using real and simulated datasets, we compared the efficiency of both indices in a two-stage context. The criteria we applied to compare the efficiency of both indices were that the total selection response of each index must be lower than or equal to the single-stage combined linear genomic selection index (CLGSI) response and that the correlation of each index with the net genetic merit should be maximum. Using four different total proportions for the real dataset, the estimated total OCMLGSI and DCMLGSI responses explained 97.5% and 90%, respectively, of the estimated single-stage CLGSI selection response. In addition, at stage two, the estimated correlations of the OCMLGSI and the DCMLGSI with the net genetic merit were 0.84 and 0.63, respectively. We found similar results for the simulated datasets. Thus, we recommend using the OCMLGSI when performing multistage selection.
组合多阶段线性基因组选择指数(CMLGSI)是表型和基因组估计育种值的线性组合,有助于预测个体的净遗传价值,而净遗传价值又是各性状真实但不可观测的育种值与其各自经济价值加权后的线性组合。CMLGSI是一种用于改良多个性状的成本节约策略,因为育种者无需在每个阶段测量所有性状。(OCMLGSI)和(DCMLGSI)指数是主要的CMLGSI。OCMLGSI考虑了各阶段之间的指数相关值,而DCMLGSI则规定各阶段之间的指数相关值为零。我们使用真实和模拟数据集,在两阶段背景下比较了这两种指数的效率。我们用于比较两种指数效率的标准是,每个指数的总选择反应必须低于或等于单阶段组合线性基因组选择指数(CLGSI)的反应,并且每个指数与净遗传价值的相关性应最大。对于真实数据集,使用四种不同的总比例,估计的OCMLGSI和DCMLGSI总反应分别解释了估计的单阶段CLGSI选择反应的97.5%和90%。此外,在第二阶段,OCMLGSI和DCMLGSI与净遗传价值的估计相关性分别为0.84和0.63。我们在模拟数据集中也发现了类似的结果。因此,我们建议在进行多阶段选择时使用OCMLGSI。