Molecular Biology, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
Nucleic Acids Res. 2020 Jun 4;48(10):5603-5615. doi: 10.1093/nar/gkaa238.
Naegleria gruberi RNA ligase (NgrRnl) exemplifies the Rnl5 family of adenosine triphosphate (ATP)-dependent polynucleotide ligases that seal 3'-OH RNA strands in the context of 3'-OH/5'-PO4 nicked duplexes. Like all classic ligases, NgrRnl forms a covalent lysyl-AMP intermediate. A two-metal mechanism of lysine adenylylation was established via a crystal structure of the NgrRnl•ATP•(Mn2+)2 Michaelis complex. Here we conducted an alanine scan of active site constituents that engage the ATP phosphates and the metal cofactors. We then determined crystal structures of ligase-defective NgrRnl-Ala mutants in complexes with ATP/Mn2+. The unexpected findings were that mutations K170A, E227A, K326A and R149A (none of which impacted overall enzyme structure) triggered adverse secondary changes in the active site entailing dislocations of the ATP phosphates, altered contacts to ATP, and variations in the numbers and positions of the metal ions that perverted the active sites into off-pathway states incompatible with lysine adenylylation. Each alanine mutation elicited a distinctive off-pathway distortion of the ligase active site. Our results illuminate a surprising plasticity of the ligase active site in its interactions with ATP and metals. More broadly, they underscore a valuable caveat when interpreting mutational data in the course of enzyme structure-function studies.
嗜中性变形虫 RNA 连接酶 (NgrRnl) 是腺苷三磷酸 (ATP) 依赖性多核苷酸连接酶 Rnl5 家族的一个范例,该酶能在 3'-OH/5'-PO4 缺口双链体的情况下封闭 3'-OH RNA 链。与所有经典连接酶一样,NgrRnl 形成一个共价赖氨酸-AMP 中间产物。通过 NgrRnl•ATP•(Mn2+)2 米氏复合物的晶体结构,建立了赖氨酸腺苷酸化的双金属机制。在这里,我们对参与 ATP 磷酸基团和金属辅因子的活性位点成分进行了丙氨酸扫描。然后,我们确定了与 ATP/Mn2+ 形成复合物的无活性 NgrRnl-Ala 突变体的晶体结构。出乎意料的发现是,突变 K170A、E227A、K326A 和 R149A(均未影响整体酶结构)引发了活性位点的意外次级变化,导致 ATP 磷酸基团的位移、与 ATP 的改变接触以及金属离子数量和位置的变化,从而使活性位点变成与赖氨酸腺苷酸化不兼容的非途径状态。每个丙氨酸突变都会导致连接酶活性位点的独特非途径扭曲。我们的结果阐明了连接酶活性位点在与 ATP 和金属相互作用中的惊人灵活性。更广泛地说,它们强调了在酶结构-功能研究过程中解释突变数据时需要注意的一个有价值的警告。