de Freitas Isabel C, Parreira Luanna S, Barbosa Eduardo C M, Novaes Barbara A, Mou Tong, Alves Tiago V, Quiroz Jhon, Wang Yi-Chi, Slater Thomas J, Thomas Andrew, Wang Bin, Haigh Sarah J, Camargo Pedro H C
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil.
Nanoscale. 2020 Jun 21;12(23):12281-12291. doi: 10.1039/d0nr01875a. Epub 2020 Apr 22.
We develop herein plasmonic-catalytic Au-IrO nanostructures with a morphology optimized for efficient light harvesting and catalytic surface area; the nanoparticles have a nanoflower morphology, with closely spaced Au branches all partially covered by an ultrathin (1 nm) IrO shell. This nanoparticle architecture optimizes optical features due to the interactions of closely spaced plasmonic branches forming electromagnetic hot spots, and the ultra-thin IrO layer maximizes efficient use of this expensive catalyst. This concept was evaluated towards the enhancement of the electrocatalytic performances towards the oxygen evolution reaction (OER) as a model transformation. The OER can play a central role in meeting future energy demands but the performance of conventional electrocatalysts in this reaction is limited by the sluggish OER kinetics. We demonstrate an improvement of the OER performance for one of the most active OER catalysts, IrO, by harvesting plasmonic effects from visible light illumination in multimetallic nanoparticles. We find that the OER activity for the Au-IrO nanoflowers can be improved under LSPR excitation, matching best properties reported in the literature. Our simulations and electrocatalytic data demonstrate that the enhancement in OER activities can be attributed to an electronic interaction between Au and IrO and to the activation of Ir-O bonds by LSPR excited hot holes, leading to a change in the reaction mechanism (rate-determinant step) under visible light illumination.
我们在此开发了一种等离子体催化的金 - 氧化铱纳米结构,其形态经过优化,以实现高效的光捕获和催化表面积;这些纳米颗粒具有纳米花形态,紧密排列的金分支全部部分覆盖着超薄(1纳米)的氧化铱壳层。这种纳米颗粒结构由于紧密排列的等离子体分支相互作用形成电磁热点,从而优化了光学特性,并且超薄的氧化铱层最大限度地提高了这种昂贵催化剂的有效利用率。作为模型转化,针对析氧反应(OER)的电催化性能增强对这一概念进行了评估。析氧反应在满足未来能源需求方面可发挥核心作用,但传统电催化剂在该反应中的性能受到缓慢的析氧反应动力学限制。我们通过在多金属纳米颗粒中利用可见光照射的等离子体效应,证明了最活跃的析氧反应催化剂之一氧化铱的析氧反应性能得到改善。我们发现,在局域表面等离子体共振(LSPR)激发下,金 - 氧化铱纳米花的析氧反应活性可以提高,与文献报道的最佳性能相匹配。我们的模拟和电催化数据表明,析氧反应活性的增强可归因于金和氧化铱之间的电子相互作用以及LSPR激发的热空穴对Ir - O键的激活,导致在可见光照射下反应机理(速率决定步骤)发生变化。