Tang Tongxin, Li Meng, Liang Zhiting, Hu Yu-Wen, Chen Jian, Wang Guilin, Chen Junwei, Ye Kai-Hang, Lin Zhan
Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
Chemistry. 2023 Jun 19;29(34):e202300225. doi: 10.1002/chem.202300225. Epub 2023 May 2.
Boosting oxygen evolution reaction by local surface plasmon resonance (LSPR) provides breakthrough opportunities for the promotion of solar energy conversion; the potential of LSPR, however, has rarely been tapped and investigated. Here, we report the precise regulation of commercial Au nanoparticles plasmonic nanomaterial and OER electrocatalysts, viz., the NiCoO electrocatalytic layer with hole transport ability and photothermal effect is prepared on the surface of Au nanoparticles by photoelectrodeposition. The NiCoO layer not only increases the transmission distance of holes generated by plasmonic Au nanoparticles, but also reduce the agglomeration of plasmonic Au nanoparticles during long-time OER reaction, which greatly improves the OER catalytic ability. The current density of NiCoO /Au anode achieves 16.58 mA cm at 2.0 V versus RHE, which is about 6.5 times of pristine NiCoO anode (2.56 mA cm ) and 47 times of pristine Au anode (0.35 mA cm ). More importantly, with the LSPR and photothermal effect of plasmonic Au nanoparticles, the NiCoO /Au anode provides additional current density of 7.01 mA cm after illumination, and maintains no attenuation for more than 2000 s. Benefiting from the solution of agglomeration problem of plasmonic Au nanoparticles in the long-time OER process and the effective utilization of generated holes of plasmonic Au nanoparticles, this design can provide guidance for the application of plasmonic materials in the field of electrocatalysis.
通过局部表面等离子体共振(LSPR)来提高氧气析出反应(OER)为推动太阳能转化提供了突破性机会;然而,LSPR 的潜力很少被挖掘和研究。在此,我们报告了商业 Au 纳米颗粒等离子体纳米材料和 OER 电催化剂的精确调控,即通过光电沉积在 Au 纳米颗粒表面制备具有空穴传输能力和光热效应的 NiCoO 电催化层。NiCoO 层不仅增加了由等离子体 Au 纳米颗粒产生的空穴的传输距离,而且在长时间的 OER 反应中减少了等离子体 Au 纳米颗粒的团聚,从而极大地提高了 OER 催化能力。NiCoO/Au 阳极在 2.0 V 相对于 RHE 的电流密度达到 16.58 mA·cm ,约为原始 NiCoO 阳极(2.56 mA·cm )的 6.5 倍和原始 Au 阳极(0.35 mA·cm )的 47 倍。更重要的是,由于等离子体 Au 纳米颗粒的 LSPR 和光热效应,NiCoO/Au 阳极在光照后提供了额外的 7.01 mA·cm 的电流密度,并且在 2000 秒以上的时间内没有衰减。受益于在长时间 OER 过程中解决等离子体 Au 纳米颗粒团聚问题以及有效利用等离子体 Au 纳米颗粒产生的空穴,这种设计可为等离子体材料在电催化领域的应用提供指导。