Suppr超能文献

钙钛矿太阳能电池:一种基于多孔石墨碳的空穴传输体/对电极材料,从入侵植物物种凤眼蓝中提取。

Perovskite Solar Cells: A Porous Graphitic Carbon based Hole Transporter/Counter Electrode Material Extracted from an Invasive Plant Species Eichhornia Crassipes.

机构信息

Department of Physics, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, 641 014, India.

Faculty of Engineering and Science, Western Norway University of Applied Sciences, 5063, Bergen, Norway.

出版信息

Sci Rep. 2020 Apr 22;10(1):6835. doi: 10.1038/s41598-020-62900-4.

Abstract

Perovskite solar cells (PSCs) composed of organic polymer-based hole-transporting materials (HTMs) are considered to be an important strategy in improving the device performance, to compete with conventional solar cells. Yet the use of such expensive and unstable HTMs, together with hygroscopic perovskite structure remains a concern - an arguable aspect for the prospect of onsite photovoltaic (PV) application. Herein, we have demonstrated the sustainable fabrication of efficient and air-stable PSCs composed of an invasive plant (Eichhornia crassipes) extracted porous graphitic carbon (EC-GC) which plays a dual role as HTM/counter electrode. The changes in annealing temperature (~450 °C, ~850 °C and ~1000 °C) while extracting the EC-GC, made a significant impact on the degree of graphitization - a remarkable criterion in determining the device performance. Hence, the fabricated champion device-1: Glass/FTO/c-TiO/mp-TiO/CHNHPbICl/EC-GC10@CHNHPbI Cl/EC-GC10) exhibited a PCE of 8.52%. Surprisingly, the introduced EC-GC10 encapsulated perovskite interfacial layer at the perovskite/HTM interface helps in overcoming the moisture degradation of the hygroscopic perovskite layer in which the same champion device-1 evinced better air stability retaining its efficiency ~94.40% for 1000 hours. We believe that this present work on invasive plant extracted carbon playing a dual role, together as an interfacial layer may pave the way towards a reliable perovskite photovoltaic device at low-cost.

摘要

钙钛矿太阳能电池(PSCs)由有机聚合物基空穴传输材料(HTMs)组成,被认为是提高器件性能、与传统太阳能电池竞争的重要策略。然而,这种昂贵且不稳定的 HTMs 的使用以及亲水性钙钛矿结构仍然令人担忧——这是现场光伏(PV)应用前景的一个有争议的方面。在此,我们展示了由入侵植物(水葫芦)提取的多孔石墨化碳(EC-GC)高效且稳定的钙钛矿太阳能电池的可持续制造,该 EC-GC 同时充当 HTM/对电极。在提取 EC-GC 时,退火温度(约 450°C、850°C 和 1000°C)的变化对石墨化程度产生了重大影响——这是决定器件性能的重要标准。因此,所制造的冠军器件-1:玻璃/FTO/c-TiO/mp-TiO/CHNHPbICl/EC-GC10@CHNHPbI Cl/EC-GC10 表现出 8.52%的 PCE。令人惊讶的是,在钙钛矿/HTM 界面处引入的 EC-GC10 封装钙钛矿界面层有助于克服亲水性钙钛矿层的水分降解,其中同一冠军器件-1 在 1000 小时内保留其效率~94.40%,表现出更好的空气稳定性。我们相信,这种关于入侵植物提取的碳发挥双重作用的现有工作,同时作为界面层,可能为低成本可靠的钙钛矿光伏器件铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c621/7176691/aead9aff4aa1/41598_2020_62900_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验