Zheng Xiaonan, Yao Yuan, Wang Ya, Liu Yang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, PR China.
Nanoscale. 2020 May 7;12(17):9696-9707. doi: 10.1039/d0nr00072h. Epub 2020 Apr 23.
As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe-N-C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M-N-C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N, the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn-N-C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert N[triple bond, length as m-dash]N triple bond, inducing the "acceptance-donation" process to facilitate the activation and reduction of N. The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR.
作为化学领域最重要的课题之一,氮的活化和还原生成氨仍然是一个巨大的挑战。对氮还原反应(NRR)缺乏深入了解阻碍了高性能催化剂的开发。在本研究中,我们通过进行第一性原理计算,将第二种过渡金属(M = Mn、Fe、Co、Ni、Cu、Zn和Mo)引入单原子Fe-N-C催化剂的活性位点,以调节电子结构,并研究所设计的相邻双金属Fe/M-N-C催化剂在酸性条件下电化学NRR中的活性。通过检查催化剂的稳定性、对N的吸附能力、NRR中决速步骤的吉布斯自由能变化以及析氢反应(HER)活性,只有Fe/Mn-N-C催化剂被预测为NRR的有前途的候选者,因为它显示出显著提高的催化活性和对HER的强选择性。机理研究揭示了双金属活性位点的协同效应,引入的Mn原子对电子构型产生强烈的多参考效应,以创建更多通道来转移d轨道电子以激活惰性N≡N三键,诱导“接受-给予”过程以促进N的活化和还原。目前的结果为设计用于电化学NRR的稳定、活性和选择性催化剂提供了一种有效策略。