Lebensmittelchemie, Technische Universität München, Lise-Meitner-Straße 34, D-85354 Freising, Germany.
Universität Hohenheim, Institut für Lebensmittelchemie, Fachgebiet Lebensmittelchemie und Analytische Chemie (170a), Garbenstraße 28, 70599 Stuttgart, Germany.
J Agric Food Chem. 2020 May 27;68(21):5927-5937. doi: 10.1021/acs.jafc.0c01674. Epub 2020 May 15.
To identify the odorants responsible for a rancid off-flavor in olive oils, first, the key aroma compounds in a premium extra virgin olive oil (1) were characterized by the sensomics approach and were then compared to those present in a certified rancid off-flavor olive oil (1) obtained from the International Olive Council (IOC). By application of an aroma extract dilution analysis, 46 odorants were detected and subsequently identified in 1 and 35 odorants in 1, respectively. After quantitation by stable isotope dilution assays, calculation of odor activity values (OAVs; ratio of concentration to odor threshold) revealed only 5 odorants with OAVs > 10 in 1, while 13 odorants showed OAVs > 100 in 1, with (,)-2,4-decadienal, hexanoic acid, octanal, hexanal, ()-2-octenal, and ()-2-nonenal being among the most odor-active compounds. Thus, marker aroma compounds for this off-flavor type could be suggested. Additionally, based on the OAVs obtained, the overall aroma profiles of both oils were mimicked by aroma recombination experiments. As proof of concept, 16 marker odorants were quantitated in two additional extra virgin olive oils and in eight further olive oils eliciting a rancid off-flavor. Application of a principal component analysis (PCA) and a hierarchical cluster analysis successfully discriminated both categories of olive oils. In the 12 olive oils used, acetic acid showed the highest Pearson coefficient between the perceived intensity of the rancid defect and the odorant concentration. In particular, (,)- and (,)-2,4-decadienal and ()-2-nonenal can be suggested as chemical markers for olive oil rancidity in combination with positive aroma markers, for example, acetaldehyde and ()-3-hexenal.
为了鉴定橄榄油中导致腐臭异味的气味物质,首先,采用感官组学方法对特级初榨橄榄油(1)中的关键香气化合物进行了特征描述,然后将其与国际橄榄油理事会(IOC)获得的已认证腐臭异味橄榄油(1)中的香气化合物进行了比较。通过应用香气提取稀释分析,在 1 中检测到了 46 种气味物质,在 1 中检测到了 35 种气味物质。通过稳定同位素稀释分析定量后,计算出气味活度值(OAV;浓度与气味阈值的比值),结果显示在 1 中只有 5 种气味物质的 OAV 值大于 10,而在 1 中,有 13 种气味物质的 OAV 值大于 100,其中(,)-2,4-癸二烯醛、己酸、辛醛、己醛、(,)-2-辛烯醛和(,)-2-壬烯醛是最具气味活性的化合物。因此,可以提出这种异味类型的标记香气化合物。此外,根据所获得的 OAV 值,通过香气重组实验模拟了两种油的整体香气特征。作为概念验证,在另外两种特级初榨橄榄油和另外八种引起腐臭异味的橄榄油中定量了 16 种标记气味物质。应用主成分分析(PCA)和层次聚类分析成功地区分了两类橄榄油。在所使用的 12 种橄榄油中,乙酸的腐臭缺陷感知强度与气味物质浓度之间的皮尔逊系数最高。特别是(,)-和(,)-2,4-癸二烯醛和(,)-2-壬烯醛可以与正气味标记物(例如乙醛和(,)-3-己烯醛)一起作为橄榄油腐臭的化学标记物。