Suppr超能文献

用于线性阵列波达方向估计的低复杂度波束空间超分辨率

Low Complexity Beamspace Super Resolution for DOA Estimation of Linear Array.

作者信息

Pan Jie, Jiang Fu

机构信息

College of Information Engineering, Yangzhou University, Yangzhou 225009, China.

出版信息

Sensors (Basel). 2020 Apr 15;20(8):2222. doi: 10.3390/s20082222.

Abstract

Beamspace processing has become much attractive in recent radar and wireless communication applications, since the advantages of complexity reduction and of performance improvements in array signal processing. In this paper, we concentrate on the beamspace DOA estimation of linear array via atomic norm minimization (ANM). The existed generalized linear spectrum estimation based ANM approaches suffer from the high computational complexity for large scale array, since their complexity depends upon the number of sensors. To deal with this problem, we develop a low dimensional semidefinite programming (SDP) implementation of beamspace atomic norm minimization (BS-ANM) approach for DFT beamspace based on the super resolution theory on the semi-algebraic set. Then, a computational efficient iteration algorithm is proposed based on alternating direction method of multipliers (ADMM) approach. We develop the covariance based DOA estimation methods via BS-ANM and apply the BS-ANM based DOA estimation method to the channel estimation problem for massive MIMO systems. Simulation results demonstrate that the proposed methods exhibit the superior performance compared to the state-of-the-art counterparts.

摘要

由于在阵列信号处理中具有降低复杂度和提高性能的优势,波束空间处理在最近的雷达和无线通信应用中变得非常有吸引力。在本文中,我们专注于通过原子范数最小化(ANM)进行线性阵列的波束空间波达方向(DOA)估计。现有的基于广义线性谱估计的ANM方法对于大规模阵列存在高计算复杂度的问题,因为它们的复杂度取决于传感器的数量。为了解决这个问题,我们基于半代数集上的超分辨率理论,开发了一种用于基于离散傅里叶变换(DFT)波束空间的波束空间原子范数最小化(BS - ANM)方法的低维半定规划(SDP)实现。然后,基于乘子交替方向法(ADMM)提出了一种计算效率高的迭代算法。我们通过BS - ANM开发了基于协方差的DOA估计方法,并将基于BS - ANM的DOA估计方法应用于大规模多输入多输出(MIMO)系统的信道估计问题。仿真结果表明,与现有同类方法相比,所提出的方法具有优越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e3/7218884/db9482a11669/sensors-20-02222-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验