Suppr超能文献

基于逆波束空间变换的稀疏圆形阵列无网格欠定到达方向估计

Gridless Underdetermined Direction of Arrival Estimation in Sparse Circular Array Using Inverse Beamspace Transformation.

作者信息

Tian Ye, Huang Yonghui, Zhang Xiaoxu, Tang Xiaogang

机构信息

National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China.

University of Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Sensors (Basel). 2022 Apr 8;22(8):2864. doi: 10.3390/s22082864.

Abstract

Underdetermined DOA estimation, which means estimating more sources than sensors, is a challenging problem in the array signal processing community. This paper proposes a novel algorithm that extends the underdetermined DOA estimation in a Sparse Circular Array (SCA). We formulate this problem as a matrix completion problem. Meanwhile, we propose an inverse beamspace transformation combined with the Gridless SPICE (GLS) algorithm to complete the covariance matrix sampled by SCA. The DOAs are then obtained by solving a polynomial equation with using the Root-MUSIC algorithm. The proposed algorithm is named GSCA. Monte-Carlo simulations are performed to evaluate the GSCA algorithm, the spatial spectrum plots and RMSE curves demonstrated that the GSCA algorithm can give reasonable results of underdetermined DOA estimation in SCA. Meanwhile, the performance of the algorithm under various configurations of SCA is also evaluated. Numerical results indicated that the GSCA algorithm can provide access to solve the DOA estimation problem in Uniform Circular Array (UCA) when random sensor failures occur.

摘要

欠定DOA估计是指估计的源数多于传感器数,这在阵列信号处理领域是一个具有挑战性的问题。本文提出了一种新颖的算法,该算法扩展了稀疏圆形阵列(SCA)中的欠定DOA估计。我们将此问题表述为一个矩阵补全问题。同时,我们提出了一种结合无网格SPICE(GLS)算法的逆波束空间变换,以补全由SCA采样得到的协方差矩阵。然后通过使用Root-MUSIC算法求解多项式方程来获得DOA。所提出的算法被命名为GSCA。进行了蒙特卡罗模拟以评估GSCA算法,空间谱图和RMSE曲线表明,GSCA算法能够在SCA中给出合理的欠定DOA估计结果。同时,还评估了该算法在SCA各种配置下的性能。数值结果表明,当随机传感器发生故障时,GSCA算法能够解决均匀圆形阵列(UCA)中的DOA估计问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ba/9028569/6e168915f276/sensors-22-02864-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验