Kim Donghyeon, Kim Tae Hun, Hong Tae Eun, Bae Jong-Seong, Kim Chang Hae, Kim Jaegyeom, Kim Seung-Joo, Jeon Ki-Wan, Park Jung-Chul
Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea.
Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 46958, Korea.
Materials (Basel). 2020 Apr 15;13(8):1859. doi: 10.3390/ma13081859.
BaSiON:Eu (BSON:Eu) materials with different N contents were successfully prepared and characterized. Rietveld refinements showed that N ions were partially substituted for the O ions in the SiO-tetrahedra because the bond lengths of Si‒(O,N) (average value = 1.689 Å) were slightly elongated compared with those of Si‒O (average value = 1.659 Å), which resulted in the minute compression of the Ba(2)‒O bond lengths from 2.832 to 2.810 Å. The average N contents of BSON:Eu phosphors were determined from 100 nm to 2000 nm depth of grain using a secondary ion mass spectrometry (SIMS): 0.064 (synthesized using 100% α-SiN), 0.035 (using 50% α-SiN and 50% SiO), and 0.000 (using 100% SiO). Infrared (IR) and X-ray photoelectron spectroscopy (XPS) measurements corroborated the Rietveld refinements: the new IR mode at 850 cm (Si‒N stretching vibration) and the binding energy at 98.6 eV (Si-2p) due to the N substitution. Furthermore, in UV-region, the absorbance of N-substituted BSON:Eu (synthesized using 100% α-SiN) phosphor was about two times higher than that of BSO:Eu (using 100% SiO). Owing to the N substitution, surprisingly, the photoluminescence (PL) and LED-PL intensity of BSON:Eu (synthesized using 100% α-SiN) was about 5.0 times as high as that of BSO:Eu (using 100% SiO). The compressive strain estimated by the Williamson-Hall (W-H) method, was slightly increased with the higher N content in the host-lattice of BaSiO which warranted that the N ion plays an important role in the highly enhanced PL intensity of BSON:Eu phosphor. These phosphor materials could be a bridgehead for developing new phosphors and application in white NUV-LEDs field.
成功制备并表征了具有不同氮(N)含量的BaSiON:Eu(BSON:Eu)材料。Rietveld精修结果表明,N离子部分取代了SiO四面体中的O离子,因为Si‒(O,N)的键长(平均值 = 1.689 Å)相较于Si‒O的键长(平均值 = 1.659 Å)略有伸长,这导致Ba(2)‒O键长从2.832 Å微缩至2.810 Å。使用二次离子质谱(SIMS)测定了BSON:Eu荧光粉在晶粒深度从100 nm至2000 nm范围内的平均N含量:0.064(使用100% α-SiN合成)、0.035(使用50% α-SiN和50% SiO)以及0.000(使用100% SiO)。红外(IR)和X射线光电子能谱(XPS)测量结果证实了Rietveld精修结果:由于N取代,出现了850 cm处的新IR模式(Si‒N伸缩振动)以及98.6 eV处的结合能(Si - 2p)。此外,在紫外区域,N取代的BSON:Eu(使用100% α-SiN合成)荧光粉的吸光度约为BSO:Eu(使用100% SiO)的两倍。令人惊讶的是,由于N取代,BSON:Eu(使用100% α-SiN合成)的光致发光(PL)和LED - PL强度约为BSO:Eu(使用100% SiO)的5.0倍。通过威廉姆森 - 霍尔(W - H)方法估算的压缩应变随着BaSiO晶格中N含量的增加而略有增加,这表明N离子在BSON:Eu荧光粉的PL强度高度增强中起着重要作用。这些荧光粉材料可能成为开发新型荧光粉以及在白色近紫外发光二极管(NUV - LEDs)领域应用的桥头堡。