Wang Zhu, Zhang Yan, Wei Xing, Guo Tingting, Fan Jibin, Ni Lei, Weng Yijun, Zha Zhengdi, Liu Jian, Tian Ye, Li Ting, Duan Li
School of Materials Science and Engineering, Chang'an University, Xi'an, 710064, China.
School of Physics, Shandong University, Jinan 250100, China.
Phys Chem Chem Phys. 2020 May 6;22(17):9647-9655. doi: 10.1039/d0cp00291g.
In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe heterostructures. According to our results, the SiC/InSe heterostructure possesses an inherent type-II band alignment, which displays a noticeable Stark effect on the band gap under a stable electric field. Besides, the heterostructure exhibits a low carrier effective mass and a narrower band gap when it is subject to tensile strain. More interestingly, the transition from an indirect to a direct band gap occurs when 8% of compressive strain is applied. Taken together, findings in this study indicate that the SiC/InSe heterostructure opens up a new avenue for its application in the fields of optoelectronics and microelectronics.
在本研究中,基于密度泛函理论(DFT)的第一性原理计算被用于研究SiC/InSe异质结构的电子特性。根据我们的结果,SiC/InSe异质结构具有固有的II型能带排列,在稳定电场下对带隙表现出明显的斯塔克效应。此外,当受到拉伸应变时,该异质结构表现出低载流子有效质量和较窄的带隙。更有趣的是,当施加8%的压缩应变时,会发生从间接带隙到直接带隙的转变。综上所述,本研究结果表明,SiC/InSe异质结构为其在光电子学和微电子学领域的应用开辟了一条新途径。