Suppr超能文献

一种用于预测出院后 30 天内再次住院风险的机器学习模型:使用 LACE 指数和再住院高风险患者(PARR)模型进行验证。

A machine learning model for predicting risk of hospital readmission within 30 days of discharge: validated with LACE index and patient at risk of hospital readmission (PARR) model.

机构信息

Data Science Team, Orion Health, 181, Grafton Road, Grafton, Auckland, New Zealand.

Clinical Research Team, North Shore Hospital, Waitemata District Health Board, Auckland, New Zealand.

出版信息

Med Biol Eng Comput. 2020 Jul;58(7):1459-1466. doi: 10.1007/s11517-020-02165-1. Epub 2020 Apr 23.

Abstract

The objective of this study was to design and develop a predictive model for 30-day risk of hospital readmission using machine learning techniques. The proposed predictive model was then validated with the two most commonly used risk of readmission models: LACE index and patient at risk of hospital readmission (PARR). The study cohort consisted of 180,118 admissions with 22,565 (12.5%) of actual readmissions within 30 days of hospital discharge, from 01 Jan 2015 to 31 Dec 2016 from two Auckland-region hospitals. We developed a machine learning model to predict 30-day readmissions using the model types XGBoost, Random Forests, and Adaboost with decision stumps as a base learner with different feature combinations and preprocessing procedures. The proposed model achieved the F1-score (0.386 ± 0.006), sensitivity (0.598 ± 0.013), positive predictive value (PPV) (0.285 ± 0.004), and negative predictive value (NPV) (0.932 ± 0.002). When compared with LACE and PARR(NZ) models, the proposed model achieved better F1-score by 12.7% compared with LACE and 23.2% compared with PARR(NZ). The mean sensitivity of the proposed model was 6.0% higher than LACE and 41% higher than PARR(NZ). The mean PPV was 15.9% and 14.6% higher than LACE and PARR(NZ) respectively. We presented an all-cause predictive model for 30-day risk of hospital readmission with an area under the receiver operating characteristics (AUROC) of 0.75 for the entire dataset. Graphical abstract.

摘要

本研究旨在设计并开发一种使用机器学习技术预测 30 天内再入院风险的预测模型。然后,我们使用两种最常用的再入院风险模型:LACE 指数和再入院风险患者(PARR)对所提出的预测模型进行验证。该研究队列包括 180118 例入院患者,其中 22565 例(12.5%)在出院后 30 天内实际再入院,数据来源于 2015 年 1 月 1 日至 2016 年 12 月 31 日期间奥克兰地区的两家医院。我们使用 XGBoost、随机森林和 Adaboost 模型类型开发了一种机器学习模型,使用决策树桩作为基础学习者,结合不同的特征组合和预处理程序来预测 30 天内的再入院情况。所提出的模型获得了 0.386±0.006 的 F1 分数、0.598±0.013 的敏感性、0.285±0.004 的阳性预测值和 0.932±0.002 的阴性预测值。与 LACE 和 PARR(NZ)模型相比,所提出的模型的 F1 分数比 LACE 高 12.7%,比 PARR(NZ)高 23.2%。所提出模型的平均敏感性比 LACE 高 6.0%,比 PARR(NZ)高 41%。平均阳性预测值分别比 LACE 和 PARR(NZ)高 15.9%和 14.6%。我们提出了一种用于预测 30 天内医院再入院风险的全因预测模型,该模型在整个数据集上的受试者工作特征曲线下面积(AUROC)为 0.75。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验