Suppr超能文献

机器学习与标准预测规则预测住院再入院的评估。

Assessment of Machine Learning vs Standard Prediction Rules for Predicting Hospital Readmissions.

机构信息

Department of Population Health, University of Maryland Medical System, Baltimore.

Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore.

出版信息

JAMA Netw Open. 2019 Mar 1;2(3):e190348. doi: 10.1001/jamanetworkopen.2019.0348.

Abstract

IMPORTANCE

Hospital readmissions are associated with patient harm and expense. Ways to prevent hospital readmissions have focused on identifying patients at greatest risk using prediction scores.

OBJECTIVE

To identify the type of score that best predicts hospital readmissions.

DESIGN, SETTING, AND PARTICIPANTS: This prognostic study included 14 062 consecutive adult hospital patients with 16 649 discharges from a tertiary care center, suburban community hospital, and urban critical access hospital in Maryland from September 1, 2016, through December 31, 2016. Patients not included as eligible discharges by the Centers for Medicare & Medicaid Services or the Chesapeake Regional Information System for Our Patients were excluded. A machine learning rank score, the Baltimore score (B score) developed using a machine learning technique, for each individual hospital using data from the 2 years before September 1, 2016, was compared with standard readmission risk assessment scores to predict 30-day unplanned readmissions.

MAIN OUTCOMES AND MEASURES

The 30-day readmission rate evaluated using various readmission scores: B score, HOSPITAL score, modified LACE score, and Maxim/RightCare score.

RESULTS

Of the 10 732 patients (5605 [52.2%] male; mean [SD] age, 54.56 [22.42] years) deemed to be eligible for the study, 1422 were readmitted. The area under the receiver operating characteristic curve (AUROC) for individual rules was 0.63 (95% CI, 0.61-0.65) for the HOSPITAL score, which was significantly lower than the 0.66 for modified LACE score (95% CI, 0.64-0.68; P < .001). The B score machine learning score was significantly better than all other scores; 48 hours after admission, the AUROC of the B score was 0.72 (95% CI, 0.70-0.73), which increased to 0.78 (95% CI, 0.77-0.79) at discharge (all P < .001). At the hospital using Maxim/RightCare score, the AUROC was 0.63 (95% CI, 0.59-0.69) for HOSPITAL, 0.64 (95% CI, 0.61-0.68) for Maxim/RightCare, and 0.66 (95% CI, 0.62-0.69) for modified LACE score. The B score was 0.72 (95% CI, 0.69-0.75) 48 hours after admission and 0.81 (95% CI, 0.79-0.84) at discharge. In directly comparing the B score with the sensitivity at cutoff values for modified LACE, HOSPITAL, and Maxim/RightCare scores, the B score was able to identify the same number of readmitted patients while flagging 25.5% to 54.9% fewer patients.

CONCLUSIONS AND RELEVANCE

Among 3 hospitals in different settings, an automated machine learning score better predicted readmissions than commonly used readmission scores. More efficiently targeting patients at higher risk of readmission may be the first step toward potentially preventing readmissions.

摘要

重要性

医院再入院与患者伤害和费用有关。预防医院再入院的方法侧重于使用预测评分来确定风险最大的患者。

目的

确定预测医院再入院的最佳评分类型。

设计、地点和参与者:这项预后研究纳入了马里兰州一家三级护理中心、郊区社区医院和城市关键通道医院的 14062 名连续成年住院患者和 16649 名出院患者。未被医疗保险和医疗补助服务中心或切萨皮克地区信息系统(用于我们的患者)确认为合格出院的患者被排除在外。使用机器学习技术开发的用于每个医院的机器学习排名评分(B 评分),使用 2016 年 9 月 1 日之前两年的数据进行计算,与标准再入院风险评估评分进行比较,以预测 30 天内无计划再入院。

主要结果和测量

使用各种再入院评分(B 评分、HOSPITAL 评分、改良 LACE 评分和 Maxim/RightCare 评分)评估 30 天内的再入院率。

结果

在被认为符合研究条件的 10732 名患者(5605 [52.2%]名男性;平均[SD]年龄,54.56 [22.42]岁)中,有 1422 人再次入院。个体规则的接受者操作特征曲线(AUROC)下面积(95%CI)为 HOSPITAL 评分的 0.63(95%CI,0.61-0.65),显著低于改良 LACE 评分的 0.66(95%CI,0.64-0.68;P<0.001)。B 评分的机器学习评分明显优于所有其他评分;入院后 48 小时,B 评分的 AUROC 为 0.72(95%CI,0.70-0.73),出院时增加至 0.78(95%CI,0.77-0.79)(均 P<0.001)。在使用 Maxim/RightCare 评分的医院中,HOSPITAL 的 AUROC 为 0.63(95%CI,0.59-0.69),Maxim/RightCare 为 0.64(95%CI,0.61-0.68),改良 LACE 为 0.66(95%CI,0.62-0.69)。入院后 48 小时 B 评分为 0.72(95%CI,0.69-0.75),出院时为 0.81(95%CI,0.79-0.84)。在直接比较 B 评分与改良 LACE、HOSPITAL 和 Maxim/RightCare 评分的截断值灵敏度时,B 评分能够识别相同数量的再入院患者,同时标记 25.5%至 54.9%的患者。

结论和相关性

在 3 家不同环境的医院中,自动化机器学习评分比常用的再入院评分更能准确预测再入院。更有效地针对再入院风险较高的患者可能是预防再入院的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7440/6484642/2339555b8a13/jamanetwopen-2-e190348-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验