Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China.
Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China.
Environ Sci Pollut Res Int. 2020 Jun;27(18):22935-22945. doi: 10.1007/s11356-020-08807-z. Epub 2020 Apr 23.
High mercury (Hg) affects biochemical-physiological characteristics of plant leaves such as leaf chlorophyll, causing refractive discontinuity and modifications in leaf spectra. Furthermore, the hyperspectroscopy provides a potential tool for fast non-destructive estimation of leaf Hg. However, there are few studies that have investigated Hg for wetland plants via hyperspectral inversion. In this study, reeds (Phragmites australis) leaf Hg concentration and hyperspectra were measured under different soil Hg treatment. Hg-sensitive parameters were identified by basic spectral transformations and continuous wavelet transformation (CWT). Inversion models were developed using stepwise multiple linear regressions (SMLR), partial least square regression (PLSR), and random forest (RF) to estimate leaf Hg. The results indicated that CWT improved the correlation of hyperspectra and leaf Hg by 0.020-0.227, and R of the CWT-related model increased by 0.0557-0.2441. In addition, Hg-sensitive bands were predominant at 600-750 (visible region) and 1500-2300 nm (mid-infrared), and Hg might modify leaves spectra primarily by affecting chlorophyll and water contents. Of the studied models, SMLR using normalized transformation (NR) and CWT (NR-CWT-SMLR) model (R = 0.8594, RMSE = 0.0961) and RF using NR and CWT (NR-CWT-RF) model (R = 0.8560, RMSE = 0.1062) suited for leaf Hg inversion. For Hg content < 1.0 mg kg, the former model was more reliable and accurate. This study provided a method for the estimation of Hg contamination in wetland plant and indicated that model-based hyperspectral inversion was feasible for fast and non-destructive monitoring.
高汞 (Hg) 会影响植物叶片的生化生理特性,如叶片叶绿素,导致折射不连续和叶片光谱发生变化。此外,高光谱技术为快速无损估计叶片 Hg 提供了一种潜在的工具。然而,很少有研究通过高光谱反演来研究湿地植物的 Hg。本研究在不同土壤 Hg 处理下测量了芦苇(Phragmites australis)叶片 Hg 浓度和高光谱。通过基本光谱变换和连续小波变换(CWT)确定 Hg 敏感参数。采用逐步多元线性回归(SMLR)、偏最小二乘回归(PLSR)和随机森林(RF)建立反演模型,估算叶片 Hg。结果表明,CWT 提高了高光谱与叶片 Hg 的相关性,提高了 0.020-0.227,CWT 相关模型的 R 值提高了 0.0557-0.2441。此外,Hg 敏感波段主要集中在 600-750nm(可见光区)和 1500-2300nm(中红外区),Hg 可能主要通过影响叶绿素和水分含量来改变叶片光谱。在所研究的模型中,归一化变换(NR)和 CWT(NR-CWT-SMLR)模型(R=0.8594,RMSE=0.0961)和 NR 和 CWT(NR-CWT-RF)模型(R=0.8560,RMSE=0.1062)更适合叶片 Hg 反演。对于 Hg 含量<1.0mgkg,前者模型更可靠、准确。本研究为湿地植物 Hg 污染的估算提供了一种方法,表明基于模型的高光谱反演可用于快速、无损监测。