School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China.
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China.
Anal Chem. 2020 May 19;92(10):6941-6948. doi: 10.1021/acs.analchem.9b05727. Epub 2020 May 6.
For surface-enhanced Raman scattering (SERS) analysis, only analytes that can be absorbed spontaneously onto a noble metal surface can be detected effectively. Therefore, getting nonadsorptive molecules close enough to the surface has always been a key challenge in SERS analysis. Here absorbance measurements show that the liquid-interfacial array (LIA) does not adsorb or enrich benzopyrene (Bap) molecules, which lack effective functional groups that can interact with the noble metal surfaces. But the SERS intensity of 0.1 ppm Bap on the LIA is 10 times larger than that of 10 ppm Bap on traditional solid substrate, i.e., 3 orders of magnitude of enhancement. The LIA overcomes the restriction of affinity between Bap molecules and the metal surface, and the Bap molecules can easily enter nanogaps without steric hindrance. Furthermore, both adsorptive and nonadsorptive molecules were used to observe the SERS enhancement behavior on the LIA platforms. In multiple detection, competitive SERS signal changes could be observed between adsorptive and nonadsorptive molecules or between nonadsorptive and nonadsorptive molecules. A theoretical scheme was profiled for localized surface plasmon resonance (SPR) properties of the LIA. Finite difference-time domain (FDTD) simulation shows that the LIAs have biphasic and accessible asymmetric hotspots, and the electric field enhancement in the CHCl (O) phase is approximately four times larger than that of the water (W) phase. In addition, the position and relative strength of the electromagnetic field depend on the spatial position of gold nanoparticles (GNPs) relative to the liquid-liquid interface (LLI), i.e., when the GNP dimer is completely immersed in a certain phase, the electromagnetic field enhancement of the CHCl phase is approximately 7 times larger than that of the W phase. We speculate that dual-phase-accessible hotspots and the hydrophobic environment provided by CHCl are two important factors contributing to successful detection of four common polycyclic aromatic hydrocarbons (PAHs) with a detection limit of 10 ppb. Finally, the LIA platform successfully realizes simultaneous detection of multiple PAHs in both plant and animal oils with good stability. This study provides a new direction for the development of high-efficiency and practical SERS technology for nonadsorptive molecules.
对于表面增强拉曼散射(SERS)分析,只有可以自发吸附到贵金属表面的分析物才能被有效检测到。因此,使非吸附分子足够接近表面一直是 SERS 分析中的一个关键挑战。在这里,吸光度测量表明,液相界面阵列(LIA)不会吸附或富集缺乏可以与贵金属表面相互作用的有效官能团的苯并芘(Bap)分子。但是,LIA 上 0.1ppm Bap 的 SERS 强度比传统固体衬底上 10ppm Bap 的强度大 10 倍,即增强了 3 个数量级。LIA 克服了 Bap 分子与金属表面之间亲和力的限制,Bap 分子可以很容易地进入纳米间隙而不会受到空间位阻的影响。此外,使用吸附和非吸附分子来观察 LIA 平台上的 SERS 增强行为。在多次检测中,可以观察到吸附和非吸附分子之间或非吸附和非吸附分子之间的竞争 SERS 信号变化。为 LIA 的局域表面等离子体共振(SPR)特性建立了一个理论方案。有限差分时间域(FDTD)模拟表明,LIAs 具有双相和可及的不对称热点,并且 CHCl(O)相中的电场增强大约是水(W)相的四倍。此外,电磁场的位置和相对强度取决于金纳米粒子(GNPs)相对于液-液界面(LLI)的空间位置,即当 GNP 二聚体完全浸入某一相时,CHCl 相的电磁场增强大约是 W 相的 7 倍。我们推测,双相可及热点和 CHCl 提供的疏水环境是成功检测四种常见多环芳烃(PAHs)的 10ppb 检测限的两个重要因素。最后,LIA 平台成功实现了植物和动物油中多种 PAHs 的同时检测,具有良好的稳定性。本研究为开发用于非吸附分子的高效实用 SERS 技术提供了新的方向。