Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America.
Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America.
Cell Signal. 2020 Aug;72:109653. doi: 10.1016/j.cellsig.2020.109653. Epub 2020 Apr 21.
The G12/13 subfamily of heterotrimeric guanine nucleotide binding proteins comprises the α subunits Gα12 and Gα13, which transduce signals for cell growth, cytoskeletal rearrangements, and oncogenic transformation. In an increasing range of cancers, overexpressed Gα12 or Gα13 are implicated in aberrant cell proliferation and/or metastatic invasion. Although Gα12 and Gα13 bind non-redundant sets of effector proteins and participate in unique signalling pathways, the structural features responsible for functional differences between these α subunits are largely unknown. Invertebrates encode a single G12/13 homolog that participates in cytoskeletal changes yet appears to lack signalling to SRF (serum response factor), a transcriptional activator stimulated by mammalian Gα12 and Gα13 to promote growth and tumorigenesis. Our previous studies identified an evolutionarily divergent region in Gα12 for which replacement by homologous sequence from Drosophila melanogaster abolished SRF signalling, whereas the same invertebrate substitution was fully tolerated in Gα13 [Montgomery et al. (2014) Mol. Pharmacol. 85: 586]. These findings prompted our current approach of evolution-guided mutagenesis to identify fine structural features of Gα12 and Gα13 that underlie their respective SRF activation mechanisms. Our results identified two motifs flanking the α4 helix that play a key role in Gα12 signalling to SRF. We found the region encompassing these motifs to provide an interacting surface for multiple Gα12-specific target proteins that fail to bind Gα13. Adjacent to this divergent region, a highly-conserved domain was vital for SRF activation by both Gα12 and Gα13. However, dissection of this domain using invertebrate substitutions revealed different signalling mechanisms in these α subunits and identified Gα13-specific determinants of binding Rho-specific guanine nucleotide exchange factors. Furthermore, invertebrate substitutions in the C-terminal, α5 helical region were selectively disruptive to Gα12 signalling. Taken together, our results identify key structural features near the C-terminus that evolved after the divergence of Gα12 and Gα13, and should aid the development of agents to selectively manipulate signalling by individual α subunits of the G12/13 subfamily.
G 蛋白异三聚体中 G12/13 亚家族由 Gα12 和 Gα13 两个α亚基组成,它们可以传递细胞生长、细胞骨架重排和致癌转化的信号。在越来越多的癌症中,过表达的 Gα12 或 Gα13 与异常的细胞增殖和/或转移性浸润有关。尽管 Gα12 和 Gα13 与非冗余的效应蛋白结合,并参与独特的信号通路,但负责这些α亚基功能差异的结构特征在很大程度上是未知的。无脊椎动物编码一种单一的 G12/13 同源物,参与细胞骨架的改变,但似乎缺乏对 SRF(血清反应因子)的信号转导,SRF 是一种转录激活因子,受哺乳动物 Gα12 和 Gα13 的刺激,促进生长和肿瘤发生。我们之前的研究确定了 Gα12 中一个进化上分化的区域,该区域被来自黑腹果蝇的同源序列取代后,SRF 信号被完全阻断,而相同的无脊椎动物取代在 Gα13 中完全被耐受[Montgomery 等人,2014 年,分子药理学 85:586]。这些发现促使我们目前采用进化指导的诱变方法来确定 Gα12 和 Gα13 的精细结构特征,这些特征是它们各自的 SRF 激活机制的基础。我们的研究结果确定了围绕α4 螺旋的两个基序,它们在 Gα12 向 SRF 的信号传递中起着关键作用。我们发现,包含这些基序的区域为多个不能与 Gα13 结合的 Gα12 特异性靶蛋白提供了一个相互作用表面。在这个分化区域的旁边,一个高度保守的结构域对于 Gα12 和 Gα13 激活 SRF 是至关重要的。然而,使用无脊椎动物取代对该结构域进行剖析揭示了这些α亚基中的不同信号机制,并确定了 Gα13 特异性的 Rho 特异性鸟嘌呤核苷酸交换因子结合决定因素。此外,在 C 末端、α5 螺旋区域的无脊椎动物取代对 Gα12 信号传递具有选择性破坏性。综上所述,我们的研究结果确定了 Gα12 和 Gα13 分化后进化的 C 端附近的关键结构特征,这应该有助于开发选择性操纵 G12/13 亚家族中单个α亚基信号传递的药物。