Suppr超能文献

成功实施使用 Epic 电子健康记录系统中另一家医院发布的规范的围手术期数据仓库。

Successful Implementation of a Perioperative Data Warehouse Using Another Hospital's Published Specification From Epic's Electronic Health Record System.

机构信息

From the Department of Anesthesiology, Pain Management and Perioperative Medicine, University of Miami, Miami, Florida.

Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, California.

出版信息

Anesth Analg. 2021 Feb 1;132(2):465-474. doi: 10.1213/ANE.0000000000004806.

Abstract

BACKGROUND

Many hospitals have replaced their legacy anesthesia information management system with an enterprise-wide electronic health record system. Integrating the anesthesia data within the context of the global hospital information infrastructure has created substantive challenges for many organizations. A process to build a perioperative data warehouse from Epic was recently published from the University of California Los Angeles (UCLA), but the generalizability of that process is unknown. We describe the implementation of their process at the University of Miami (UM).

METHODS

The UCLA process was tested at UM, and performance was evaluated following the configuration of a reporting server and transfer of the required Clarity tables to that server. Modifications required for the code to execute correctly in the UM environment were identified and implemented, including the addition of locally specified elements in the database.

RESULTS

The UCLA code to build the base tables in the perioperative data warehouse executed correctly after minor modifications to match the local server and database architecture at UM. The 26 stored procedures in the UCLA process all ran correctly using the default settings provided and populated the base tables. After modification of the item lists to reflect the UM implementation of Epic (eg, medications, laboratory tests, physiologic monitors, and anesthesia machine parameters), the UCLA code ran correctly and populated the base tables. The data from those tables were used successfully to populate the existing perioperative data warehouse at UM, which housed data from the legacy anesthesia information management system of the institution. The time to pull data from Epic and populate the perioperative data warehouse was 197 ± 47 minutes (standard deviation [SD]) on weekdays and 260 ± 56 minutes (SD) on weekend days, measured over 100 consecutive days. The longer times on weekends reflect the simultaneous execution of database maintenance tasks on the reporting server. The UCLA extract process has been in production at UM for the past 18 months and has been invaluable for quality assurance, business process, and research activities.

CONCLUSIONS

The data schema developed at UCLA proved to be a practical and scalable method to extract information from the Epic electronic health system database into the perioperative data warehouse in use at UM. Implementing the process developed at UCLA to build a comprehensive perioperative data warehouse from Epic is an extensible process that other hospitals seeking more efficient access to their electronic health record data should consider.

摘要

背景

许多医院已经用全范围电子病历系统取代了传统的麻醉信息管理系统。在全球医院信息基础设施范围内整合麻醉数据,给许多机构带来了巨大的挑战。加州大学洛杉矶分校(UCLA)最近发布了一个从 Epic 构建围手术期数据仓库的流程,但该流程的普遍性尚不清楚。我们描述了在迈阿密大学(UM)实施该流程的情况。

方法

UCLA 的流程在 UM 进行了测试,并在配置报告服务器和将所需的 Clarity 表传输到该服务器之后,对其性能进行了评估。确定并实施了在 UM 环境中使代码正确执行所需的修改,包括在数据库中添加本地指定的元素。

结果

在对匹配 UM 服务器和数据库架构的代码进行了微小修改后,UCLA 构建围手术期数据仓库的基本表的代码可以正确执行。UCLA 流程中的 26 个存储过程在使用默认设置并填充基本表时都可以正确运行。修改项目列表以反映 UM 对 Epic 的实现(例如,药物、实验室测试、生理监测器和麻醉机参数)后,UCLA 代码可以正确运行并填充基本表。这些表中的数据成功地用于填充 UM 现有的围手术期数据仓库,该仓库存储了该机构传统麻醉信息管理系统的数据。从 Epic 提取数据并填充围手术期数据仓库的时间在工作日为 197±47 分钟(标准差[SD]),在周末为 260±56 分钟(SD),这是在 100 多个连续日中测量的。周末时间较长反映了报告服务器上同时执行数据库维护任务。UCLA 提取过程在 UM 已经运行了 18 个月,对于质量保证、业务流程和研究活动非常有价值。

结论

UCLA 开发的数据方案被证明是一种实用且可扩展的方法,可以从 Epic 电子健康系统数据库中提取信息到 UM 使用的围手术期数据仓库中。实施从 Epic 构建综合围手术期数据仓库的 UCLA 开发的流程是一个可扩展的流程,其他希望更有效地访问其电子病历数据的医院应该考虑采用该流程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验