Suppr超能文献

两个正态分布混合的似然比检验的零分布的模拟百分点。

Simulated percentage points for the null distribution of the likelihood ratio test for a mixture of two normals.

作者信息

Thode H C, Finch S J, Mendell N R

机构信息

Department of Community and Preventive Medicine, SUNY, Stony Brook.

出版信息

Biometrics. 1988 Dec;44(4):1195-201.

PMID:3233255
Abstract

We find the percentage points of the likelihood ratio test of the null hypothesis that a sample of n observations is from a normal distribution with unknown mean and variance against the alternative that the sample is from a mixture of two distinct normal distributions, each with unknown mean and unknown (but equal) variance. The mixing proportion pi is also unknown under the alternative hypothesis. For 2,500 samples of sizes n = 15, 20, 25, 40, 50, 70, 75, 80, 100, 150, 250, 500, and 1,000, we calculated the likelihood ratio statistic, and from these values estimated the percentage points of the null distributions. Our algorithm for the calculation of the maximum likelihood estimates of the unknown parameters included precautions against convergence of the maximization algorithm to a local rather than global maximum. Investigations for convergence to an asymptotic distribution indicated that convergence was very slow and that stability was not apparent for samples as large as 1,000. Comparisons of the percentage points to the commonly assumed chi-squared distribution with 2 degrees of freedom indicated that this assumption is too liberal; i.e., one's P-value is greater than that indicated by chi 2(2). We conclude then that one would need what is usually an unfeasibly large sample size (n greater than 1,000) for the use of large-sample approximations to be justified.

摘要

我们求出了似然比检验的百分点,该检验针对的原假设是:n个观测值的样本来自均值和方差未知的正态分布;备择假设是:样本来自两个不同正态分布的混合,每个正态分布的均值和方差(相等但)未知。在备择假设下,混合比例pi也是未知的。对于大小为n = 15、20、25、40、50、70、75、80、100、150、250、500和1000的2500个样本,我们计算了似然比统计量,并根据这些值估计了原分布的百分点。我们用于计算未知参数最大似然估计的算法包括防止最大化算法收敛到局部而非全局最大值的预防措施。对收敛到渐近分布的研究表明,收敛非常缓慢,对于大小为1000的样本,稳定性也不明显。将这些百分点与通常假定的自由度为2的卡方分布进行比较,结果表明该假设过于宽松;即,一个人的P值大于卡方(2)所表明的值。我们由此得出结论,要使大样本近似合理,通常需要一个大到不可行的样本量(n大于1000)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验