Suppr超能文献

用于不对称催化的同手性共价有机框架

Homochiral Covalent Organic Frameworks for Asymmetric Catalysis.

作者信息

Ma Hui-Chao, Zou Jie, Li Xue-Tian, Chen Gong-Jun, Dong Yu-Bin

机构信息

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China.

出版信息

Chemistry. 2020 Nov 2;26(61):13754-13770. doi: 10.1002/chem.202001006. Epub 2020 Sep 17.

Abstract

Owing to their permanent porosity, highly ordered and extended structure, good chemical stability, and tunability, covalent organic frameworks (COFs) have emerged as a new type of organic materials that can offer various applications in different fields. Benefiting from the huge database of organic reactions, the required functionality of COFs can be readily achieved by modification of the corresponding organic functional groups on either polymerizable monomers or established COF frameworks. This striking feature allows homochiral covalent organic frameworks (HCCOFs) to be reasonably designed and synthesized, as well as their use as a unique platform to fabricate asymmetric catalysts. This contribution provides an overview of new progress in HCCOF-based asymmetric catalysis, including design, synthesis, and their application in asymmetric organic synthesis. Moreover, major challenges and developing trends in this field are also discussed. It is anticipated that this review article will provide some new insights into HCCOFs for heterogeneous asymmetric catalysis and help to encourage further contributions in this young but promising field.

摘要

由于其具有永久孔隙率、高度有序且扩展的结构、良好的化学稳定性以及可调节性,共价有机框架(COFs)已成为一种新型有机材料,可在不同领域提供各种应用。受益于庞大的有机反应数据库,通过对可聚合单体或已建立的COF框架上的相应有机官能团进行修饰,可以轻松实现所需的COF功能。这一显著特征使得同手性共价有机框架(HCCOFs)能够被合理设计和合成,并用作制备不对称催化剂的独特平台。本文综述了基于HCCOF的不对称催化的新进展,包括设计、合成及其在不对称有机合成中的应用。此外,还讨论了该领域的主要挑战和发展趋势。预计这篇综述文章将为非均相不对称催化中的HCCOFs提供一些新的见解,并有助于鼓励在这个年轻但有前途的领域做出进一步贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验