Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
Computational Biology Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands.
Angew Chem Int Ed Engl. 2020 Jul 13;59(29):12113-12121. doi: 10.1002/anie.202003626. Epub 2020 May 18.
Cellular signaling is regulated by the assembly of proteins into higher-order complexes. Bottom-up creation of synthetic protein assemblies, especially asymmetric complexes, is highly challenging. Presented here is the design and implementation of asymmetric assembly of a ternary protein complex facilitated by Rosetta modeling and thermodynamic analysis. The wild-type symmetric CT32-CT32 interface of the 14-3-3-CT32 complex was targeted, ultimately favoring asymmetric assembly on the 14-3-3 scaffold. Biochemical studies, supported by mass-balance models, allowed characterization of the parameters driving asymmetric assembly. Importantly, our work reveals that both the individual binding affinities and cooperativity between the assembling components are crucial when designing higher-order protein complexes. Enzyme complementation on the 14-3-3 scaffold highlighted that interface engineering of a symmetric ternary complex generates asymmetric protein complexes with new functions.
细胞信号转导受到蛋白质组装成更高阶复合物的调节。从下到上合成蛋白质组装体,尤其是不对称复合物,极具挑战性。本文设计并实施了一种由罗塞塔建模和热力学分析促进的三元蛋白质复合物的不对称组装。通过最终有利于在 14-3-3 支架上进行不对称组装,靶向了 14-3-3-CT32 复合物的野生型对称 CT32-CT32 界面。通过质量平衡模型支持的生化研究,对驱动不对称组装的参数进行了表征。重要的是,我们的工作表明,在设计高阶蛋白质复合物时,组装成分的单个结合亲和力和协同作用都至关重要。在 14-3-3 支架上的酶互补作用突出表明,对称三元复合物的界面工程可生成具有新功能的不对称蛋白质复合物。