Smith Michael, Chalklen Thomas, Lindackers Cathrin, Calahorra Yonatan, Howe Caitlin, Tamboli Alkausil, Bax Daniel V, Barrett David J, Cameron Ruth E, Best Serena M, Kar-Narayan Sohini
Department of Materials Science & Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
ACS Appl Bio Mater. 2020 Apr 20;3(4):2140-2149. doi: 10.1021/acsabm.0c00012. Epub 2020 Mar 11.
It has become increasingly evident that the mechanical and electrical environment of a cell is crucial in determining its function and the subsequent behavior of multicellular systems. Platforms through which cells can directly interface with mechanical and electrical stimuli are therefore of great interest. Piezoelectric materials are attractive in this context because of their ability to interconvert mechanical and electrical energy, and piezoelectric , in particular, are ideal candidates for tools within mechanobiology, given their ability to both detect and apply small forces on a length scale that is compatible with cellular dimensions. The choice of piezoelectric material is crucial to ensure compatibility with cells under investigation, both in terms of stiffness and biocompatibility. Here, we show that poly-l-lactic acid nanotubes, grown using a melt-press template wetting technique, can provide a "soft" piezoelectric interface onto which human dermal fibroblasts readily attach. Interestingly, by controlling the crystallinity of the nanotubes, the level of attachment can be regulated. In this work, we provide detailed nanoscale characterization of these nanotubes to show how differences in stiffness, surface potential, and piezoelectric activity of these nanotubes result in differences in cellular behavior.
越来越明显的是,细胞的机械和电环境对于决定其功能以及多细胞系统随后的行为至关重要。因此,能使细胞直接与机械和电刺激相互作用的平台备受关注。在这种情况下,压电材料因其能够相互转换机械能和电能而具有吸引力,尤其是聚偏氟乙烯,鉴于其能够在与细胞尺寸相匹配的长度尺度上检测和施加小力,它是力学生物学工具的理想候选材料。压电材料的选择对于确保与所研究的细胞在刚度和生物相容性方面的兼容性至关重要。在这里,我们表明,使用熔压模板润湿技术生长的聚-L-乳酸纳米管可以提供一个“柔软”的压电界面,人皮肤成纤维细胞很容易附着在上面。有趣的是,通过控制纳米管的结晶度,可以调节附着水平。在这项工作中,我们提供了这些纳米管的详细纳米级表征,以展示这些纳米管在刚度、表面电位和压电活性方面的差异如何导致细胞行为的差异。