Suppr超能文献

用于肝毒性和肾毒性预测的最具影响力的物理化学和体外分析描述符

Most Influential Physicochemical and In Vitro Assay Descriptors for Hepatotoxicity and Nephrotoxicity Prediction.

作者信息

Rana Payal, Kogut Stephen, Wen Xuerong, Akhlaghi Fatemeh, Aleo Michael D

机构信息

Drug Safety Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States.

College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States.

出版信息

Chem Res Toxicol. 2020 Jul 20;33(7):1780-1790. doi: 10.1021/acs.chemrestox.0c00040. Epub 2020 May 8.

Abstract

Drug-induced organ injury is a major reason for drug candidate attrition in preclinical and clinical drug development. The liver, kidneys, and heart have been recognized as the most common organ systems affected in safety-related attrition or the subject of black box warnings and postmarket drug withdrawals. In silico physicochemical property calculations and in vitro assays have been utilized separately in the early stages of the drug discovery and development process to predict drug safety. In this study, we combined physicochemical properties and in vitro cytotoxicity assays including mitochondrial dysfunction to build organ-specific univariate and multivariable logistic regression models to achieve odds ratios for the prediction of clinical hepatotoxicity, nephrotoxicity, and cardiotoxicity using 215 marketed drugs. The multivariable hepatotoxic predictive model showed an odds ratio of 6.2 (95% confidence interval (CI) 1.7-22.8) or 7.5 (95% CI 3.2-17.8) for mitochondrial inhibition or drug plasma >1 μM for drugs associated with liver injury, respectively. The multivariable nephrotoxicity predictive model showed an odds ratio of 5.8 (95% CI 2.0-16.9), 6.4 (95% CI 1.1-39.3), or 15.9 (95% CI 2.8-89.0) for drug plasma >1 μM, mitochondrial inhibition, or hydrogen-bond-acceptor atoms >7 for drugs associated with kidney injury, respectively. Conversely, drugs with a total polar surface area ≥75 Å were 79% (odds ratio 0.21, 95% CI 0.061-0.74) less likely to be associated with kidney injury. Drugs belonging to the extended clearance classification system (ECCS) class 4, where renal secretion is the primary clearance mechanism (low permeability drugs that are bases/neutrals), were 4 (95% CI 1.8-9.5) times more likely to to be associated with kidney injury with this data set. Alternatively, ECCS class 2 drugs, where hepatic metabolism is the primary clearance (high permeability drugs that are bases/neutrals) were 77% less likely (odds ratio 0.23 95% CI 0.095-0.54) to to be associated with kidney injury. A cardiotoxicity model was poorly defined using any of these drug physicochemical attributes. Combining in silico physicochemical properties descriptors along with in vitro toxicity assays can be used to build predictive toxicity models to select small molecule therapeutics with less potential to cause liver and kidney organ toxicity.

摘要

药物性器官损伤是临床前和临床药物开发中候选药物淘汰的主要原因。肝脏、肾脏和心脏被认为是在与安全性相关的淘汰中受影响最常见的器官系统,或是黑框警告和上市后药物撤市的对象。在药物发现和开发过程的早期阶段,分别利用计算机物理化学性质计算和体外试验来预测药物安全性。在本研究中,我们结合物理化学性质和体外细胞毒性试验(包括线粒体功能障碍),构建器官特异性单变量和多变量逻辑回归模型,以使用215种上市药物预测临床肝毒性、肾毒性和心脏毒性的优势比。多变量肝毒性预测模型显示,对于与肝损伤相关的药物,线粒体抑制或药物血浆浓度>1μM时的优势比分别为6.2(95%置信区间(CI)1.7-22.8)或7.5(95%CI 3.2-17.8)。多变量肾毒性预测模型显示,对于与肾损伤相关的药物,药物血浆浓度>1μM、线粒体抑制或氢键受体原子>7时的优势比分别为5.8(95%CI 2.0-16.9)、6.4(95%CI 1.1-39.3)或15.9(95%CI 2.8-89.0)。相反,总极性表面积≥75 Å的药物与肾损伤相关的可能性降低79%(优势比0.21,95%CI 0.061-0.74)。属于扩展清除分类系统(ECCS)4类的药物(肾分泌是主要清除机制,即低渗透性的碱性/中性药物),根据该数据集,与肾损伤相关的可能性高4倍(95%CI 1.8-9.5)。另外,ECCS 2类药物(肝代谢是主要清除方式,即高渗透性的碱性/中性药物)与肾损伤相关的可能性降低77%(优势比0.23,95%CI 0.095-0.54)。使用这些药物物理化学属性中的任何一种都难以明确界定心脏毒性模型。结合计算机物理化学性质描述符和体外毒性试验可用于构建预测毒性模型,以选择具有较低肝和肾器官毒性潜力的小分子治疗药物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验