Persson Mikael, Løye Anni F, Mow Tomas, Hornberg Jorrit J
Department of Exploratory Toxicology, Non-Clinical Safety Research, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark.
J Pharmacol Toxicol Methods. 2013 Nov-Dec;68(3):302-13. doi: 10.1016/j.vascn.2013.08.001. Epub 2013 Aug 8.
Adverse drug reactions are a major cause for failures of drug development programs, drug withdrawals and use restrictions. Early hazard identification and diligent risk avoidance strategies are therefore essential. For drug-induced liver injury (DILI), this is difficult using conventional safety testing. To reduce the risk for DILI, drug candidates with a high risk need to be identified and deselected. And, to produce drug candidates without that risk associated, risk factors need to be assessed early during drug discovery, such that lead series can be optimized on safety parameters. This requires methods that allow for medium-to-high throughput compound profiling and that generate quantitative results suitable to establish structure-activity-relationships during lead optimization programs.
We present the validation of such a method, a novel high content screening assay based on six parameters (nuclei counts, nuclear area, plasma membrane integrity, lysosomal activity, mitochondrial membrane potential (MMP), and mitochondrial area) using ~100 drugs of which the clinical hepatotoxicity profile is known.
We find that a 100-fold TI between the lowest toxic concentration and the therapeutic Cmax is optimal to classify compounds as hepatotoxic or non-hepatotoxic, based on the individual parameters. Most parameters have ~50% sensitivity and ~90% specificity. Drugs hitting ≥2 parameters at a concentration below 100-fold their Cmax are typically hepatotoxic, whereas non-hepatotoxic drugs typically hit <2 parameters within that 100-fold TI. In a zone classification model, based on nuclei count, MMP and human Cmax, we identified an area without a single false positive, while maintaining 45% sensitivity. Hierarchical clustering using the multi-parametric dataset roughly separates toxic from non-toxic compounds. We employ the assay in discovery projects to prioritize novel compound series during hit-to-lead, to steer away from a DILI risk during lead optimization, for risk assessment towards candidate selection and to provide guidance of safe human exposure levels.
药物不良反应是药物研发项目失败、药物撤市及使用受限的主要原因。因此,早期危害识别和严格的风险规避策略至关重要。对于药物性肝损伤(DILI)而言,采用传统安全性检测方法很难做到这一点。为降低DILI风险,需要识别并淘汰具有高风险的候选药物。而且,为研发出无相关风险的候选药物,需要在药物发现早期评估风险因素,以便在先导化合物系列优化过程中基于安全性参数进行优化。这就需要采用能够实现中高通量化合物分析且能生成适用于在先导化合物优化项目中建立构效关系的定量结果方法。
我们展示了一种此类方法的验证过程,即一种基于六个参数(细胞核计数、核面积、质膜完整性、溶酶体活性、线粒体膜电位(MMP)和线粒体面积)的新型高内涵筛选分析方法,该方法使用了约100种已知临床肝毒性特征的药物。
我们发现,基于各个参数,最低毒性浓度与治疗性Cmax之间100倍的治疗指数(TI)最适合将化合物分类为肝毒性或非肝毒性。大多数参数的灵敏度约为50%,特异性约为90%。在浓度低于其Cmax 100倍时影响≥2个参数的药物通常具有肝毒性,而非肝毒性药物在该100倍TI范围内通常影响<2个参数。在基于细胞核计数、MMP和人体Cmax的区域分类模型中,我们确定了一个无假阳性的区域,同时保持了45%的灵敏度。使用多参数数据集进行层次聚类大致可将有毒化合物与无毒化合物区分开来。我们在发现项目中使用该分析方法,以便在命中到先导化合物阶段对新型化合物系列进行优先级排序,在先导化合物优化阶段规避DILI风险,用于候选药物选择的风险评估,并提供安全人体暴露水平的指导。