Crinquand Benjamin, Cerutti Benoît, Philippov Alexander, Parfrey Kyle, Dubus Guillaume
Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France.
Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, USA.
Phys Rev Lett. 2020 Apr 10;124(14):145101. doi: 10.1103/PhysRevLett.124.145101.
Black holes are known to launch powerful relativistic jets and emit highly variable gamma radiation. How these jets are loaded with plasma remains poorly understood. Spark gaps are thought to drive particle acceleration and pair creation in the black-hole magnetosphere. In this Letter, we perform 2D axisymmetric general-relativistic particle-in-cell simulations of a monopole black-hole magnetosphere with a realistic treatment of inverse Compton scattering and pair production. We find that the magnetosphere can self-consistently fill itself with plasma and activate the Blandford-Znajek mechanism. A highly time-dependent spark gap opens near the inner light surface, which injects pair plasma into the magnetosphere. These results may account for the high-energy activity observed in active galactic nuclei and explain the origin of plasma at the base of the jet.
众所周知,黑洞会发射强大的相对论性喷流并发出高度可变的伽马辐射。这些喷流如何被等离子体填充仍知之甚少。人们认为,火花隙驱动黑洞磁层中的粒子加速和正负电子对的产生。在本快报中,我们对单极黑洞磁层进行了二维轴对称广义相对论粒子模拟,并对逆康普顿散射和正负电子对产生进行了实际处理。我们发现,磁层能够自洽地用等离子体填充自身并激活布兰德福德-日纳杰机制。一个高度随时间变化的火花隙在内光面附近打开,将正负电子对等离子体注入磁层。这些结果可能解释了在活动星系核中观测到的高能活动,并说明了喷流底部等离子体的起源。