Suppr超能文献

使用具有新型数据增强技术的卷积神经网络对全身CT进行骨分割。

Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques.

作者信息

Noguchi Shunjiro, Nishio Mizuho, Yakami Masahiro, Nakagomi Keita, Togashi Kaori

机构信息

Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.

Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.

出版信息

Comput Biol Med. 2020 Jun;121:103767. doi: 10.1016/j.compbiomed.2020.103767. Epub 2020 Apr 20.

Abstract

BACKGROUND

The purpose of this study was to develop and evaluate an algorithm for bone segmentation on whole-body CT using a convolutional neural network (CNN).

METHODS

Bone segmentation was performed using a network based on U-Net architecture. To evaluate its performance and robustness, we prepared three different datasets: (1) an in-house dataset comprising 16,218 slices of CT images from 32 scans in 16 patients; (2) a secondary dataset comprising 12,529 slices of CT images from 20 scans in 20 patients, which were collected from The Cancer Imaging Archive; and (3) a publicly available labelled dataset comprising 270 slices of CT images from 27 scans in 20 patients. To improve the network's performance and robustness, we evaluated the efficacy of three types of data augmentation technique: conventional method, mixup, and random image cropping and patching (RICAP).

RESULTS

The network trained on the in-house dataset achieved a mean Dice coefficient of 0.983 ± 0.005 on cross validation with the in-house dataset, and 0.943 ± 0.007 with the secondary dataset. The network trained on the public dataset achieved a mean Dice coefficient of 0.947 ± 0.013 on 10 randomly generated 15-3-9 splits of the public dataset. These results outperform those reported previously. Regarding augmentation technique, the conventional method, RICAP, and a combination of these were effective.

CONCLUSIONS

The CNN-based model achieved accurate bone segmentation on whole-body CT, with generalizability to various scan conditions. Data augmentation techniques enabled construction of an accurate and robust model even with a small dataset.

摘要

背景

本研究的目的是开发并评估一种使用卷积神经网络(CNN)对全身CT进行骨分割的算法。

方法

使用基于U-Net架构的网络进行骨分割。为了评估其性能和稳健性,我们准备了三个不同的数据集:(1)一个内部数据集,包含来自16例患者32次扫描的16218层CT图像;(2)一个二级数据集,包含来自20例患者20次扫描的12529层CT图像,这些图像是从癌症影像存档库收集的;(3)一个公开可用的带标签数据集,包含来自20例患者27次扫描的270层CT图像。为了提高网络的性能和稳健性,我们评估了三种数据增强技术的效果:传统方法、混合数据增强(mixup)以及随机图像裁剪与拼接(RICAP)。

结果

在内部数据集上训练的网络在与内部数据集的交叉验证中,平均Dice系数为0.983±0.005,与二级数据集的交叉验证中为0.943±0.007。在公共数据集上训练的网络在对公共数据集进行10次随机生成的15-3-9分割时,平均Dice系数为0.947±0.013。这些结果优于先前报道的结果。关于增强技术,传统方法、RICAP以及两者的组合都是有效的。

结论

基于CNN的模型在全身CT上实现了准确的骨分割,对各种扫描条件具有通用性。数据增强技术即使在小数据集的情况下也能构建出准确且稳健的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验