Suppr超能文献

ABCNet:一种用于在全身躯干CT图像上分割和分析身体组织成分的新型高效3D密集结构网络。

ABCNet: A new efficient 3D dense-structure network for segmentation and analysis of body tissue composition on body-torso-wide CT images.

作者信息

Liu Tiange, Pan Junwen, Torigian Drew A, Xu Pengfei, Miao Qiguang, Tong Yubing, Udupa Jayaram K

机构信息

School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.

College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China.

出版信息

Med Phys. 2020 Jul;47(7):2986-2999. doi: 10.1002/mp.14141. Epub 2020 Apr 21.

Abstract

PURPOSE

Quantification of body tissue composition is important for research and clinical purposes, given the association between the presence and severity of several disease conditions, such as the incidence of cardiovascular and metabolic disorders, survival after chemotherapy, etc., with the quantity and quality of body tissue composition. In this work, we aim to automatically segment four key body tissues of interest, namely subcutaneous adipose tissue, visceral adipose tissue, skeletal muscle, and skeletal structures from body-torso-wide low-dose computed tomography (CT) images.

METHOD

Based on the idea of residual Encoder-Decoder architecture, a novel neural network design named ABCNet is proposed. The proposed system makes full use of multiscale features from four resolution levels to improve the segmentation accuracy. This network is built on a uniform convolutional unit and its derived units, which makes the ABCNet easy to implement. Several parameter compression methods, including Bottleneck, linear increasing feature maps in Dense Blocks, and memory-efficient techniques, are employed to lighten the network while making it deeper. The strategy of dynamic soft Dice loss is introduced to optimize the network in coarse-to-fine tuning. The proposed segmentation algorithm is accurate, robust, and very efficient in terms of both time and memory.

RESULTS

A dataset composed of 38 low-dose unenhanced CT images, with 25 male and 13 female subjects in the age range 31-83 yr and ranging from normal to overweight to obese, is utilized to evaluate ABCNet. We compare four state-of-the-art methods including DeepMedic, 3D U-Net, V-Net, Dense V-Net, against ABCNet on this dataset. We employ a shuffle-split fivefold cross-validation strategy: In each experimental group, 18, 5, and 15 CT images are randomly selected out of 38 CT image sets for training, validation, and testing, respectively. The commonly used evaluation metrics - precision, recall, and F1-score (or Dice) - are employed to measure the segmentation quality. The results show that ABCNet achieves superior performance in accuracy of segmenting body tissues from body-torso-wide low-dose CT images compared to other state-of-the-art methods, reaching 92-98% in common accuracy metrics such as F1-score. ABCNet is also time-efficient and memory-efficient. It costs about 18 h to train and an average of 12 sec to segment four tissue components from a body-torso-wide CT image, on an ordinary desktop with a single ordinary GPU.

CONCLUSIONS

Motivated by applications in body tissue composition quantification on large population groups, our goal in this paper was to create an efficient and accurate body tissue segmentation method for use on body-torso-wide CT images. The proposed ABCNet achieves peak performance in both accuracy and efficiency that seems hard to improve any more. The experiments performed demonstrate that ABCNet can be run on an ordinary desktop with a single ordinary GPU, with practical times for both training and testing, and achieves superior accuracy compared to other state-of-the-art segmentation methods for the task of body tissue composition analysis from low-dose CT images.

摘要

目的

鉴于多种疾病状况的存在和严重程度,如心血管和代谢紊乱的发生率、化疗后的生存率等,与身体组织成分的数量和质量之间存在关联,因此对身体组织成分进行量化对于研究和临床目的而言至关重要。在本研究中,我们旨在从全身低剂量计算机断层扫描(CT)图像中自动分割出四个关键的感兴趣身体组织,即皮下脂肪组织、内脏脂肪组织、骨骼肌和骨骼结构。

方法

基于残差编码器 - 解码器架构的思想,提出了一种名为ABCNet的新型神经网络设计。所提出的系统充分利用了来自四个分辨率水平的多尺度特征,以提高分割精度。该网络基于统一的卷积单元及其派生单元构建,这使得ABCNet易于实现。采用了几种参数压缩方法,包括瓶颈结构、密集块中的线性增加特征图以及内存高效技术,在加深网络的同时减轻其负担。引入动态软骰子损失策略,以在从粗到细的调整过程中优化网络。所提出的分割算法在准确性、鲁棒性以及时间和内存方面都非常高效。

结果

使用一个由38幅低剂量平扫CT图像组成的数据集来评估ABCNet,该数据集包含25名男性和13名女性受试者,年龄在31 - 83岁之间,涵盖了从正常体重到超重再到肥胖的范围。我们在该数据集上,将包括DeepMedic、3D U - Net、V - Net、密集V - Net在内的四种先进方法与ABCNet进行比较。我们采用随机打乱分割的五折交叉验证策略:在每个实验组中,分别从38个CT图像集中随机选择18幅、5幅和15幅CT图像用于训练、验证和测试。使用常用的评估指标——精度、召回率和F1分数(或骰子系数)来衡量分割质量。结果表明,与其他先进方法相比,ABCNet在从全身低剂量CT图像中分割身体组织的准确性方面表现卓越,在诸如F1分数等常见准确性指标上达到了92 - 98%。ABCNet在时间和内存方面也很高效。在配备单个普通GPU的普通桌面上,训练大约需要18小时,从全身CT图像中分割四个组织成分平均需要12秒。

结论

受大规模人群身体组织成分量化应用的推动,我们在本文中的目标是创建一种高效且准确的身体组织分割方法,用于全身CT图像。所提出的ABCNet在准确性和效率方面均达到了峰值性能,似乎难以进一步提升。所进行的实验表明,ABCNet可以在配备单个普通GPU的普通桌面上运行,训练和测试时间都很实际,并且与其他用于从低剂量CT图像进行身体组织成分分析任务的先进分割方法相比,具有更高的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验