Molecular and Systems Physiology Laboratory, Gene Expression Laboratory, NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California 92037, USA; email:
Annu Rev Immunol. 2020 Apr 26;38:147-170. doi: 10.1146/annurev-immunol-071219-125715.
Metabolism is one of the strongest drivers of interkingdom interactions-including those between microorganisms and their multicellular hosts. Traditionally thought to fuel energy requirements and provide building blocks for biosynthetic pathways, metabolism is now appreciated for its role in providing metabolites, small-molecule intermediates generated from metabolic processes, to perform various regulatory functions to mediate symbiotic relationships between microbes and their hosts. Here, we review recent advances in our mechanistic understanding of how microbiota-derived metabolites orchestrate and support physiological responses in the host, including immunity, inflammation, defense against infections, and metabolism. Understanding how microbes metabolically communicate with their hosts will provide us an opportunity to better describe how a host interacts with all microbes-beneficial, pathogenic, and commensal-and an opportunity to discover new ways to treat microbial-driven diseases.
代谢是驱动生物界间相互作用(包括微生物与其多细胞宿主之间的相互作用)的最强驱动力之一。代谢传统上被认为是为能量需求提供燃料,并为生物合成途径提供构建块,但现在人们认识到它在提供代谢产物(代谢过程中产生的小分子中间产物)方面的作用,这些代谢产物具有各种调节功能,可调节微生物与其宿主之间的共生关系。在这里,我们综述了近年来在我们对微生物衍生代谢物如何协调和支持宿主生理反应(包括免疫、炎症、抗感染防御和代谢)的机制理解方面的进展。了解微生物如何与宿主进行代谢通讯,将为我们提供一个机会来更好地描述宿主如何与所有微生物(有益的、致病的和共生的)相互作用,并为发现治疗微生物驱动疾病的新方法提供机会。