Jiang Zetian, Wang Tianzhe, Yan Junchi
IEEE Trans Pattern Anal Mach Intell. 2021 Oct;43(10):3648-3663. doi: 10.1109/TPAMI.2020.2989928. Epub 2021 Sep 2.
This paper addresses the problem of multiple graph matching (MGM) by considering both offline batch mode and online setting. We explore the concept of cycle-consistency over pairwise matchings and formulate the problem as finding optimal composition path on the supergraph, whose vertices refer to graphs and edge weights denote score function regarding consistency and affinity. By our theoretical study we show that the offline and online MGM on supergraph can be converted to finding all pairwise shortest paths and single-source shortest paths respectively. We adopt the Floyd algorithm [1] and shortest path faster algorithm (SPFA) [2] , [3] to effectively find the optimal path. Extensive experimental results show our methods surpass state-of-the-art MGM methods, including CAO [4] , MISM [5], IMGM [6] , and many other recent methods in offline and online settings. Source code will be made publicly available.
本文通过考虑离线批处理模式和在线设置来解决多重图匹配(MGM)问题。我们探讨了成对匹配中的循环一致性概念,并将该问题表述为在超图上寻找最优组合路径,超图的顶点表示图,边权重表示关于一致性和亲和力的得分函数。通过我们的理论研究表明,超图上的离线和在线MGM可以分别转换为寻找所有成对最短路径和单源最短路径。我们采用弗洛伊德算法[1]和更快最短路径算法(SPFA)[2][3]来有效地找到最优路径。大量实验结果表明,我们的方法在离线和在线设置中优于包括CAO[4]、MISM[5]、IMGM[6]等在内的现有最先进的MGM方法。源代码将公开提供。