Suppr超能文献

一种适用于神经网络的全对最短路径快速算法。

A Fast Algorithm for All-Pairs-Shortest-Paths Suitable for Neural Networks.

作者信息

Jing Zeyu, Meister Markus

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A.

出版信息

Neural Comput. 2024 Nov 19;36(12):2710-2733. doi: 10.1162/neco_a_01716.

Abstract

Given a directed graph of nodes and edges connecting them, a common problem is to find the shortest path between any two nodes. Here we show that the shortest path distances can be found by a simple matrix inversion: if the edges are given by the adjacency matrix Aij, then with a suitably small value of γ, the shortest path distances are Dij=ceil(logγ[(I-γA)-1]ij).We derive several graph-theoretic bounds on the value of γ and explore its useful range with numerics on different graph types. Even when the distance function is not globally accurate across the entire graph, it still works locally to instruct pursuit of the shortest path. In this mode, it also extends to weighted graphs with positive edge weights. For a wide range of dense graphs, this distance function is computationally faster than the best available alternative. Finally, we show that this method leads naturally to a neural network solution of the all-pairs-shortest-path problem.

摘要

给定一个由节点和连接它们的边组成的有向图,一个常见的问题是找到任意两个节点之间的最短路径。在这里我们表明,最短路径距离可以通过一个简单的矩阵求逆来找到:如果边由邻接矩阵Aij给出,那么对于一个适当小的γ值,最短路径距离为Dij = ceil(logγ[(I - γA)-1]ij)。我们推导了关于γ值的几个图论界,并通过对不同类型图的数值计算探索了其有用范围。即使距离函数在整个图上不是全局准确的,它在局部仍然有效,可用于指导寻找最短路径。在这种模式下,它还扩展到具有正边权重的加权图。对于广泛的稠密图,这个距离函数在计算上比现有的最佳替代方法更快。最后,我们表明这种方法自然地导致了全对最短路径问题的神经网络解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验