Suppr超能文献

慢性间歇性低氧后兴奋性氨基酸转运体抑制的丧失导致孤束核突触改变。

Loss of excitatory amino acid transporter restraint following chronic intermittent hypoxia contributes to synaptic alterations in nucleus tractus solitarii.

机构信息

Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.

Pennington Biomedical Research Center, Baton Rouge, Louisiana.

出版信息

J Neurophysiol. 2020 Jun 1;123(6):2122-2135. doi: 10.1152/jn.00766.2019. Epub 2020 Apr 29.

Abstract

Peripheral viscerosensory afferent signals are transmitted to the nucleus tractus solitarii (nTS) via release of glutamate. Following release, glutamate is removed from the extrasynaptic and synaptic cleft via excitatory amino acid transporters (EAATs), thus limiting glutamate receptor activation or over activation, and maintaining its working range. We have shown that EAAT block with the antagonist -β-benzyloxyaspartic acid (TBOA) depolarized nTS neurons and increased spontaneous excitatory postsynaptic current (sEPSC) frequency yet reduced the amplitude of afferent (TS)-evoked EPSCs (TS-EPSCs). Interestingly, chronic intermittent hypoxia (CIH), a model of obstructive sleep apnea (OSA), produces similar synaptic responses as EAAT block. We hypothesized EAAT expression or function are downregulated after CIH, and this reduction in glutamate removal contributes to the observed neurophysiological responses. To test this hypothesis, we used brain slice electrophysiology and imaging of glutamate release and TS-afferent Ca to compare nTS properties of rats exposed to 10 days of normoxia (Norm; 21%O) or CIH. Results show that EAAT blockade with (3)-3-[[3-[[4-(trifluoromethyl)benzoyl]-amino]phenyl]methoxy]-l-aspartic acid (TFB-TBOA) in Norm caused neuronal depolarization, generation of an inward current, and increased spontaneous synaptic activity. The latter augmentation was eliminated by inclusion of tetrodotoxin in the perfusate. TS stimulation during TFB-TBOA also elevated extracellular glutamate and decreased presynaptic Ca and TS-EPSC amplitude. In CIH, the effects of EAAT block are eliminated or attenuated. CIH reduced EAAT expression in nTS, which may contribute to the attenuated function seen in this condition. Therefore, CIH reduces EAAT influence on synaptic and neuronal activity, which may lead to the physiological consequences seen in OSA and CIH. Removal of excitatory amino acid transporter (EAAT) restraint increases spontaneous synaptic activity yet decreases afferent [tractus solitarius (TS)]-driven excitatory postsynaptic current (EPSC) amplitude. In the chronic intermittent hypoxia model of obstructive sleep apnea, this restraint is lost due to reduction in EAAT expression and function. Thus EAATs are important in controlling elevated glutamatergic signaling, and loss of such control results in maladaptive synaptic signaling.

摘要

外周内脏感觉传入信号通过谷氨酸的释放传递到孤束核(nTS)。谷氨酸释放后,通过兴奋性氨基酸转运体(EAATs)从突触外和突触间隙中清除,从而限制谷氨酸受体的激活或过度激活,并维持其工作范围。我们已经表明,用拮抗剂-β-苯甲氧基天冬氨酸(TBOA)阻断 EAAT 使 nTS 神经元去极化,并增加自发性兴奋性突触后电流(sEPSC)的频率,而减少传入(TS)-诱发的 EPSC(TS-EPSC)的幅度。有趣的是,慢性间歇性低氧(CIH),一种阻塞性睡眠呼吸暂停(OSA)的模型,产生类似于 EAAT 阻断的突触反应。我们假设 CIH 后 EAAT 表达或功能下调,这种谷氨酸清除减少导致观察到的神经生理反应。为了验证这一假设,我们使用脑片电生理学和谷氨酸释放和 TS-传入 Ca 的成像来比较暴露于 10 天正常氧(Norm; 21%O)或 CIH 的大鼠的 nTS 特性。结果表明,在 Norm 中用(3)-3-[[3-[[4-(三氟甲基)苯甲酰基]-氨基]苯氧基]-l-天冬氨酸(TFB-TBOA)阻断 EAAT 导致神经元去极化、产生内向电流和增加自发性突触活性。在灌流液中加入河豚毒素可消除后者的增强。TFB-TBOA 期间的 TS 刺激也增加了细胞外谷氨酸并降低了突触前 Ca 和 TS-EPSC 幅度。在 CIH 中,EAAT 阻断的作用被消除或减弱。CIH 降低了 nTS 中的 EAAT 表达,这可能导致在这种情况下观察到的功能减弱。因此,CIH 降低了 EAAT 对突触和神经元活动的影响,这可能导致 OSA 和 CIH 中观察到的生理后果。去除兴奋性氨基酸转运体(EAAT)抑制会增加自发性突触活动,但会降低传入[孤束核(TS)]驱动的兴奋性突触后电流(EPSC)幅度。在阻塞性睡眠呼吸暂停的慢性间歇性低氧模型中,由于 EAAT 表达和功能的减少,这种抑制作用丧失。因此,EAAT 在控制升高的谷氨酸能信号中很重要,这种控制的丧失导致适应性突触信号的丧失。

相似文献

2
Astrocytic glutamate transporters reduce the neuronal and physiological influence of metabotropic glutamate receptors in nucleus tractus solitarii.
Am J Physiol Regul Integr Comp Physiol. 2020 Mar 1;318(3):R545-R564. doi: 10.1152/ajpregu.00319.2019. Epub 2020 Jan 22.
3
TRPV1 channels contribute to spontaneous glutamate release in nucleus tractus solitarii following chronic intermittent hypoxia.
J Neurophysiol. 2019 Mar 1;121(3):881-892. doi: 10.1152/jn.00536.2018. Epub 2019 Jan 2.
4
Excitatory amino acid transporters tonically restrain nTS synaptic and neuronal activity to modulate cardiorespiratory function.
J Neurophysiol. 2016 Mar;115(3):1691-702. doi: 10.1152/jn.01054.2015. Epub 2015 Dec 30.
5
Sustained Hypoxia Alters nTS Glutamatergic Signaling and Expression and Function of Excitatory Amino Acid Transporters.
Neuroscience. 2020 Mar 15;430:131-140. doi: 10.1016/j.neuroscience.2020.01.034. Epub 2020 Feb 4.
8
Are L-glutamate and ATP cotransmitters of the peripheral chemoreflex in the rat nucleus tractus solitarius?
Exp Physiol. 2009 Jan;94(1):38-45. doi: 10.1113/expphysiol.2008.043653. Epub 2008 Oct 17.
10
Astrocytic modulation of glutamatergic synaptic transmission is reduced in NTS of rats submitted to short-term sustained hypoxia.
J Neurophysiol. 2019 May 1;121(5):1822-1830. doi: 10.1152/jn.00279.2018. Epub 2019 Mar 20.

引用本文的文献

2
Circadian disruptions and their role in the development of hypertension.
Front Neurosci. 2024 Aug 7;18:1433512. doi: 10.3389/fnins.2024.1433512. eCollection 2024.
5
Chronic intermittent hypoxia enhances glycinergic inhibition in nucleus tractus solitarius.
J Neurophysiol. 2022 Dec 1;128(6):1383-1394. doi: 10.1152/jn.00241.2022. Epub 2022 Nov 2.
7
Glial Modulation of Energy Balance: The Dorsal Vagal Complex Is No Exception.
Int J Mol Sci. 2022 Jan 16;23(2):960. doi: 10.3390/ijms23020960.
8
Unilateral vagotomy alters astrocyte and microglial morphology in the nucleus tractus solitarii of the rat.
Am J Physiol Regul Integr Comp Physiol. 2021 Jun 1;320(6):R945-R959. doi: 10.1152/ajpregu.00019.2021. Epub 2021 May 12.
9
The role of astrocytes in the nucleus tractus solitarii in maintaining central control of autonomic function.
Am J Physiol Regul Integr Comp Physiol. 2021 Apr 1;320(4):R418-R424. doi: 10.1152/ajpregu.00254.2020. Epub 2021 Jan 13.
10
Mechanisms Underlying Neuroplasticity in the Nucleus Tractus Solitarii Following Hindlimb Unloading in Rats.
Neuroscience. 2020 Nov 21;449:214-227. doi: 10.1016/j.neuroscience.2020.09.043. Epub 2020 Oct 9.

本文引用的文献

1
Sustained Hypoxia Alters nTS Glutamatergic Signaling and Expression and Function of Excitatory Amino Acid Transporters.
Neuroscience. 2020 Mar 15;430:131-140. doi: 10.1016/j.neuroscience.2020.01.034. Epub 2020 Feb 4.
2
Astrocytic glutamate transporters reduce the neuronal and physiological influence of metabotropic glutamate receptors in nucleus tractus solitarii.
Am J Physiol Regul Integr Comp Physiol. 2020 Mar 1;318(3):R545-R564. doi: 10.1152/ajpregu.00319.2019. Epub 2020 Jan 22.
3
Post-translational Regulation of GLT-1 in Neurological Diseases and Its Potential as an Effective Therapeutic Target.
Front Mol Neurosci. 2019 Jul 9;12:164. doi: 10.3389/fnmol.2019.00164. eCollection 2019.
4
TRPV1 channels contribute to spontaneous glutamate release in nucleus tractus solitarii following chronic intermittent hypoxia.
J Neurophysiol. 2019 Mar 1;121(3):881-892. doi: 10.1152/jn.00536.2018. Epub 2019 Jan 2.
7
Unilateral Carotid Body Resection in Resistant Hypertension: A Safety and Feasibility Trial.
JACC Basic Transl Sci. 2016 Aug 29;1(5):313-324. doi: 10.1016/j.jacbts.2016.06.004. eCollection 2016 Aug.
8
Glutamate Clearance Is Locally Modulated by Presynaptic Neuronal Activity in the Cerebral Cortex.
J Neurosci. 2016 Oct 5;36(40):10404-10415. doi: 10.1523/JNEUROSCI.2066-16.2016.
9
Central neural control of the cardiovascular system: current perspectives.
Adv Physiol Educ. 2016 Sep;40(3):283-96. doi: 10.1152/advan.00027.2016.
10
Carotid Body Ablation Abrogates Hypertension and Autonomic Alterations Induced by Intermittent Hypoxia in Rats.
Hypertension. 2016 Aug;68(2):436-45. doi: 10.1161/HYPERTENSIONAHA.116.07255. Epub 2016 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验