Martinez Diana, Lima-Silveira Ludmila, Matott Michael P, Hasser Eileen M, Kline David D
Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States.
Front Physiol. 2022 Jan 14;12:821110. doi: 10.3389/fphys.2021.821110. eCollection 2021.
The brainstem nucleus tractus solitarii (nTS) processes and modulates the afferent arc of critical peripheral cardiorespiratory reflexes. Sensory afferents release glutamate to initiate the central component of these reflexes, and glutamate concentration is critically controlled by its removal astrocytic neurotransmitter transporters. Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the nTS providing tonic and phasic modulation of neuronal activity. GABA is removed from the extracellular space through GABA transporters (GATs), however, the role of GATs in nTS synaptic transmission and their influence on cardiorespiratory function is unknown. We hypothesized that GATs tonically restrain nTS inhibitory signaling and given the considerable nTS GABA-glutamate cross-talk, modify excitatory signaling and thus cardiorespiratory function. Reverse transcription real-time polymerase chain reaction (RT-PCR), immunoblot and immunohistochemistry showed expression of GAT-1 and GAT-3 mRNA and protein within the rat nTS, with GAT-3 greater than GAT-1, and GAT-3 colocalizing with astrocyte S100B. Recordings in rat nTS slices demonstrated GAT-3 block decreased spontaneous inhibitory postsynaptic current (IPSC) frequency and reduced IPSC amplitude evoked from electrical stimulation of the medial nTS. Block of GAT-3 also increased spontaneous excitatory postsynaptic current (EPSC) frequency yet did not alter sensory afferent-evoked EPSC amplitude. Block of GAT-3 in the nTS of anesthetized rats increased mean arterial pressure, heart rate, sympathetic nerve activity, and minute phrenic nerve activity. These results demonstrate inhibitory and excitatory neurotransmission in the nTS is significantly modulated by endogenous GAT-3 to influence basal cardiorespiratory function.
脑干孤束核(nTS)处理并调节关键外周心肺反射的传入弧。感觉传入神经释放谷氨酸以启动这些反射的中枢部分,谷氨酸浓度通过其被星形胶质细胞神经递质转运体清除而受到严格控制。γ-氨基丁酸(GABA)是nTS中主要的抑制性神经递质,对神经元活动进行紧张性和阶段性调节。GABA通过GABA转运体(GATs)从细胞外空间被清除,然而,GATs在nTS突触传递中的作用及其对心肺功能的影响尚不清楚。我们假设GATs对nTS抑制性信号传导起紧张性抑制作用,并且鉴于nTS中存在大量的GABA-谷氨酸相互作用,其会改变兴奋性信号传导,进而影响心肺功能。逆转录实时聚合酶链反应(RT-PCR)、免疫印迹和免疫组织化学显示,大鼠nTS内存在GAT-1和GAT-3 mRNA及蛋白表达,其中GAT-3的表达量高于GAT-1,且GAT-3与星形胶质细胞S100B共定位。大鼠nTS脑片记录显示,GAT-3阻断降低了自发性抑制性突触后电流(IPSC)频率,并减小了内侧nTS电刺激诱发的IPSC幅度。GAT-3阻断还增加了自发性兴奋性突触后电流(EPSC)频率,但未改变感觉传入神经诱发的EPSC幅度。麻醉大鼠nTS中GAT-3的阻断增加了平均动脉压、心率、交感神经活动和每分钟膈神经活动。这些结果表明,内源性GAT-3对nTS中的抑制性和兴奋性神经传递有显著调节作用,从而影响基础心肺功能。