Niu Chendi, Yang Yang, Huynh Angela, Nazy Ishac, Kaltashov Igor A
Chemistry Department, University of Massachusetts-Amherst, Amherst, Massachusetts.
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Biophys J. 2020 Oct 6;119(7):1371-1379. doi: 10.1016/j.bpj.2020.04.012. Epub 2020 Apr 21.
Association of platelet factor 4 (PF4) with heparin is a first step in formation of aggregates implicated in the development of heparin-induced thrombocytopenia (HIT), a potentially fatal immune disorder affecting 1-5% of patients receiving heparin. Despite being a critically important element in HIT etiology, relatively little is known about the specific molecular mechanism of PF4-heparin interactions. This work uses native mass spectrometry to investigate PF4 interactions with relatively short heparin chains (up to decasaccharides). The protein is shown to be remarkably unstable at physiological ionic strength in the absence of polyanions; only monomeric species are observed, and the extent of multiple charging of corresponding ions indicates a partial loss of conformational integrity. The tetramer signal remains at or below the detection threshold in the mass spectra until the solution's ionic strength is elevated well above the physiological level, highlighting the destabilizing role played by electrostatic interactions vis-à-vis quaternary structure of this high-pI protein. The tetramer assembly is dramatically facilitated by relatively short polyanions (synthetic heparin-mimetic pentasaccharide), with the majority of the protein molecules existing in the tetrameric state even at physiological ionic strength. Each tetramer accommodates up to six pentasaccharides, with at least three such ligands required to guarantee the higher-order structure integrity. Similar results are obtained for PF4 association with longer and structurally heterogeneous heparin oligomers (decamers). These longer polyanions can also induce PF4 dimer assembly when bound to the protein in relatively low numbers, lending support to a model of PF4/heparin interaction in which the latter wraps around the protein, making contacts with multiple subunits. Taken together, these results provide a more nuanced picture of PF4-glycosaminoglycan interactions leading to complex formation. This work also advocates for a greater utilization of native mass spectrometry in elucidating molecular mechanisms underlying HIT, as well as other physiological processes driven by electrostatic interactions.
血小板因子4(PF4)与肝素结合是形成聚集体的第一步,该聚集体与肝素诱导的血小板减少症(HIT)的发生有关,HIT是一种潜在致命的免疫疾病,影响1%-5%接受肝素治疗的患者。尽管PF4-肝素相互作用是HIT病因中的一个关键要素,但关于其具体分子机制的了解相对较少。这项工作使用原生质谱法研究PF4与相对较短的肝素链(至多十糖)的相互作用。结果表明,在没有聚阴离子的情况下,该蛋白在生理离子强度下非常不稳定;仅观察到单体形式,相应离子的多电荷程度表明构象完整性部分丧失。在质谱中,四聚体信号一直处于或低于检测阈值,直到溶液的离子强度升高到远高于生理水平,这突出了静电相互作用对这种高pI蛋白四级结构的破坏作用。相对较短的聚阴离子(合成肝素模拟五糖)显著促进了四聚体的组装,即使在生理离子强度下,大多数蛋白质分子也以四聚体状态存在。每个四聚体最多可容纳六个五糖,至少需要三个这样的配体来保证高级结构的完整性。PF4与更长且结构异质的肝素寡聚体(十聚体)结合也得到了类似的结果。这些更长的聚阴离子在以相对较少的数量与蛋白质结合时,也能诱导PF4二聚体的组装,这支持了PF4/肝素相互作用的模型,即后者围绕蛋白质缠绕,与多个亚基接触。综上所述,这些结果为导致复合物形成的PF4-糖胺聚糖相互作用提供了更细致入微的描述。这项工作还提倡在阐明HIT以及其他由静电相互作用驱动的生理过程的分子机制方面,更多地利用原生质谱法。