Suppr超能文献

利用已上市药品的安全数据预测潜在不良事件。

Predicting potential adverse events using safety data from marketed drugs.

机构信息

Division of Applied Regulatory Science, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.

Office of New Drugs, Food and Drug Administration, Silver Spring, MD, USA.

出版信息

BMC Bioinformatics. 2020 Apr 29;21(1):163. doi: 10.1186/s12859-020-3509-7.

Abstract

BACKGROUND

While clinical trials are considered the gold standard for detecting adverse events, often these trials are not sufficiently powered to detect difficult to observe adverse events. We developed a preliminary approach to predict 135 adverse events using post-market safety data from marketed drugs. Adverse event information available from FDA product labels and scientific literature for drugs that have the same activity at one or more of the same targets, structural and target similarities, and the duration of post market experience were used as features for a classifier algorithm. The proposed method was studied using 54 drugs and a probabilistic approach of performance evaluation using bootstrapping with 10,000 iterations.

RESULTS

Out of 135 adverse events, 53 had high probability of having high positive predictive value. Cross validation showed that 32% of the model-predicted safety label changes occurred within four to nine years of approval (median: six years).

CONCLUSIONS

This approach predicts 53 serious adverse events with high positive predictive values where well-characterized target-event relationships exist. Adverse events with well-defined target-event associations were better predicted compared to adverse events that may be idiosyncratic or related to secondary target effects that were poorly captured. Further enhancement of this model with additional features, such as target prediction and drug binding data, may increase accuracy.

摘要

背景

虽然临床试验被认为是检测不良事件的金标准,但这些试验往往没有足够的能力来检测难以观察到的不良事件。我们开发了一种初步的方法,使用已上市药物的上市后安全数据来预测 135 种不良事件。从 FDA 药品标签和科学文献中获取具有相同或多个相同靶点、结构和靶点相似性以及上市后经验持续时间的药物的不良事件信息,用作分类器算法的特征。该方法使用 54 种药物进行了研究,并使用带有 10,000 次迭代的引导的概率性能评估方法进行了概率研究。

结果

在 135 种不良事件中,有 53 种具有高阳性预测值的高可能性。交叉验证表明,模型预测的安全标签变化中有 32%发生在批准后四到九年(中位数:六年)内。

结论

该方法预测了 53 种具有高阳性预测值的严重不良事件,其中存在特征明确的靶事件关系。与可能是特发性的或与未充分捕获的次要靶效应相关的不良事件相比,具有明确靶事件关联的不良事件得到了更好的预测。通过增加其他特征(如靶预测和药物结合数据)进一步增强该模型,可能会提高准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1c8/7191698/473e7ff1ba1a/12859_2020_3509_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验