Suppr超能文献

从美国食品药品监督管理局不良事件报告系统(FAERS)中检测与靶向抗癌药物相关的上市后心血管事件时的自动信号提取、优先级排序和筛选方法。

Automatic signal extraction, prioritizing and filtering approaches in detecting post-marketing cardiovascular events associated with targeted cancer drugs from the FDA Adverse Event Reporting System (FAERS).

作者信息

Xu Rong, Wang Quanqiu

机构信息

Medical Informatics Program, Center for Clinical Investigation, Case Western Reserve University, United States.

ThinTek, LLC, Palo Alto, CA, United States.

出版信息

J Biomed Inform. 2014 Feb;47:171-7. doi: 10.1016/j.jbi.2013.10.008. Epub 2013 Oct 28.

Abstract

OBJECTIVE

Targeted drugs dramatically improve the treatment outcomes in cancer patients; however, these innovative drugs are often associated with unexpectedly high cardiovascular toxicity. Currently, cardiovascular safety represents both a challenging issue for drug developers, regulators, researchers, and clinicians and a concern for patients. While FDA drug labels have captured many of these events, spontaneous reporting systems are a main source for post-marketing drug safety surveillance in 'real-world' (outside of clinical trials) cancer patients. In this study, we present approaches to extracting, prioritizing, filtering, and confirming cardiovascular events associated with targeted cancer drugs from the FDA Adverse Event Reporting System (FAERS).

DATA AND METHODS

The dataset includes records of 4,285,097 patients from FAERS. We first extracted drug-cardiovascular event (drug-CV) pairs from FAERS through named entity recognition and mapping processes. We then compared six ranking algorithms in prioritizing true positive signals among extracted pairs using known drug-CV pairs derived from FDA drug labels. We also developed three filtering algorithms to further improve precision. Finally, we manually validated extracted drug-CV pairs using 21 million published MEDLINE records.

RESULTS

We extracted a total of 11,173 drug-CV pairs from FAERS. We showed that ranking by frequency is significantly more effective than by the five standard signal detection methods (246% improvement in precision for top-ranked pairs). The filtering algorithm we developed further improved overall precision by 91.3%. By manual curation using literature evidence, we show that about 51.9% of the 617 drug-CV pairs that appeared in both FAERS and MEDLINE sentences are true positives. In addition, 80.6% of these positive pairs have not been captured by FDA drug labeling.

CONCLUSIONS

The unique drug-CV association dataset that we created based on FAERS could facilitate our understanding and prediction of cardiotoxic events associated with targeted cancer drugs.

摘要

目的

靶向药物显著改善了癌症患者的治疗效果;然而,这些创新药物往往伴有出人意料的高心血管毒性。目前,心血管安全性对药物开发者、监管机构、研究人员和临床医生而言都是一个具有挑战性的问题,同时也是患者所关心的问题。虽然美国食品药品监督管理局(FDA)的药品标签已涵盖了许多此类事件,但自发报告系统是“真实世界”(临床试验之外)癌症患者上市后药物安全性监测的主要来源。在本研究中,我们展示了从FDA不良事件报告系统(FAERS)中提取、排序、筛选和确认与靶向抗癌药物相关的心血管事件的方法。

数据与方法

数据集包括来自FAERS的4,285,097名患者的记录。我们首先通过命名实体识别和映射过程从FAERS中提取药物-心血管事件(药物-CV)对。然后,我们使用从FDA药品标签中获得的已知药物-CV对,比较了六种排序算法,以便在提取的药物-CV对中对真阳性信号进行排序。我们还开发了三种筛选算法以进一步提高精度。最后,我们使用2100万条已发表的医学文献数据库(MEDLINE)记录对手动提取的药物-CV对进行了验证。

结果

我们从FAERS中总共提取了11,173对药物-CV对。我们发现,按频率排序比按五种标准信号检测方法排序显著更有效(排名靠前的药物-CV对的精度提高了246%)。我们开发的筛选算法进一步将总体精度提高了91.3%。通过使用文献证据进行人工筛选,我们发现FAERS和MEDLINE句子中均出现的617对药物-CV对中,约51.9%为真阳性。此外,这些阳性对中有80.6%未被FDA药品标签涵盖。

结论

我们基于FAERS创建的独特药物-CV关联数据集有助于我们理解和预测与靶向抗癌药物相关的心脏毒性事件。

相似文献

3
tcTKB: an integrated cardiovascular toxicity knowledge base for targeted cancer drugs.
AMIA Annu Symp Proc. 2015 Nov 5;2015:1342-51. eCollection 2015.
7
Comparing drug safety of hepatitis C therapies using post-market data.
BMC Med Inform Decis Mak. 2019 Aug 8;19(Suppl 4):147. doi: 10.1186/s12911-019-0860-6.
9
The cardiovascular safety of antiobesity drugs-analysis of signals in the FDA Adverse Event Report System Database.
Int J Obes (Lond). 2020 May;44(5):1021-1027. doi: 10.1038/s41366-020-0544-4. Epub 2020 Mar 9.
10
Drug-induced interstitial lung disease: a real-world pharmacovigilance study of the FDA Adverse Event Reporting System from 2004 to 2021.
Ther Adv Drug Saf. 2024 Jan 27;15:20420986231224227. doi: 10.1177/20420986231224227. eCollection 2024.

引用本文的文献

4
KG-Predict: A knowledge graph computational framework for drug repurposing.
J Biomed Inform. 2022 Aug;132:104133. doi: 10.1016/j.jbi.2022.104133. Epub 2022 Jul 12.
5
Target Adverse Event Profiles for Predictive Safety in the Postmarket Setting.
Clin Pharmacol Ther. 2021 May;109(5):1232-1243. doi: 10.1002/cpt.2074. Epub 2020 Nov 7.
8
Predicting potential adverse events using safety data from marketed drugs.
BMC Bioinformatics. 2020 Apr 29;21(1):163. doi: 10.1186/s12859-020-3509-7.
9
Detecting Signals of Dietary Supplement Adverse Events from the CFSAN Adverse Event Reporting System (CAERS).
AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:258-266. eCollection 2019.

本文引用的文献

1
Cardio-oncology: it takes two to translate.
Sci Transl Med. 2013 May 29;5(187):187fs20. doi: 10.1126/scitranslmed.3006490.
2
Toward creation of a cancer drug toxicity knowledge base: automatically extracting cancer drug-side effect relationships from the literature.
J Am Med Inform Assoc. 2014 Jan-Feb;21(1):90-6. doi: 10.1136/amiajnl-2012-001584. Epub 2013 May 18.
3
Web-scale pharmacovigilance: listening to signals from the crowd.
J Am Med Inform Assoc. 2013 May 1;20(3):404-8. doi: 10.1136/amiajnl-2012-001482. Epub 2013 Mar 6.
4
Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions.
J Am Med Inform Assoc. 2013 May 1;20(3):413-9. doi: 10.1136/amiajnl-2012-000930. Epub 2012 Oct 31.
5
Reducing the toxicity of cancer therapy: recognizing needs, taking action.
Nat Rev Clin Oncol. 2012 Jul 3;9(8):471-8. doi: 10.1038/nrclinonc.2012.99.
6
Novel data-mining methodologies for adverse drug event discovery and analysis.
Clin Pharmacol Ther. 2012 Jun;91(6):1010-21. doi: 10.1038/clpt.2012.50.
7
Tumor control versus adverse events with targeted anticancer therapies.
Nat Rev Clin Oncol. 2011 Dec 20;9(2):98-109. doi: 10.1038/nrclinonc.2011.192.
8
Cardiovascular toxicity of anticancer-targeted therapy: emerging issues in the era of cardio-oncology.
Intern Emerg Med. 2012 Apr;7(2):113-31. doi: 10.1007/s11739-011-0744-y. Epub 2011 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验