Suppr超能文献

电子病历中的围手术期风险指标可预测胰十二指肠切除术患者层面的成本变化。

Summary perioperative risk metrics within the electronic medical record predict patient-level cost variation in pancreaticoduodenectomy.

机构信息

Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI.

Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI.

出版信息

Surgery. 2020 Aug;168(2):274-279. doi: 10.1016/j.surg.2020.03.003. Epub 2020 Apr 26.

Abstract

BACKGROUND

Automated data extraction from the electronic medical record is fast, scalable, and inexpensive compared with manual abstraction. However, concerns regarding data quality and control for underlying patient variation when performing retrospective analyses exist. This study assesses the ability of summary electronic medical record metrics to control for patient-level variation in cost outcomes in pancreaticoduodenectomy.

METHODS

Patients that underwent pancreaticoduodenectomy from 2014 to 2018 at a single institution were identified within the electronic medical record and linked with the National Surgical Quality Improvement Program. Variables in both data sets were compared using interrater reliability. Logistic and linear regression modelling of complications and costs were performed using combinations of comorbidities/summary metrics. Models were compared using the adjusted R and Akaike information criterion.

RESULTS

A total of 117 patients populated the final data set. A total of 31 (26.5%) patients experienced a complication identified by the National Surgical Quality Improvement Program. The median direct variable cost for the encounter was US$14,314. Agreement between variables present in the electronic medical record and the National Surgical Quality Improvement Program was excellent. Stepwise linear regression models of costs, using only electronic medical record-extractable variables, were non-inferior to those created with manually abstracted individual comorbidities (R = 0.67 vs 0.30, Akaike information criterion 2,095 vs 2,216). Model performance statistics were minimally impacted by the addition of comorbidities to models containing electronic medical record summary metrics (R = 0.67 vs 0.70, Akaike information criterion 2,095 vs 2,088).

CONCLUSION

Summary electronic medical record perioperative risk metrics predict patient-level cost variation as effectively as individual comorbidities in the pancreaticoduodenectomy population. Automated electronic medical record data extraction can expand the patient population available for retrospective analysis without the associated increase in human and fiscal resources that manual data abstraction requires.

摘要

背景

与手动提取相比,从电子病历中自动提取数据速度快、可扩展且成本低。然而,在进行回顾性分析时,对于基础患者变异的数据质量和控制存在担忧。本研究评估了总结电子病历指标在控制胰十二指肠切除术后成本结果的患者水平变异方面的能力。

方法

在一个机构内,从 2014 年至 2018 年,通过电子病历确定接受胰十二指肠切除术的患者,并与国家外科质量改进计划相关联。使用组内相关系数比较两个数据集之间的变量。使用并发症和成本的组合进行合并症/总结指标的逻辑和线性回归建模。使用调整后的 R 和赤池信息量准则比较模型。

结果

共有 117 名患者进入最终数据集。共有 31 名(26.5%)患者经历了国家外科质量改进计划确定的并发症。该次就诊的直接变量成本中位数为 14314 美元。电子病历中存在的变量与国家外科质量改进计划之间的一致性非常好。仅使用电子病历可提取变量的成本逐步线性回归模型与使用手动提取个体合并症创建的模型无差异(R=0.67 与 0.30,赤池信息量准则 2095 与 2216)。将合并症添加到包含电子病历摘要指标的模型中,对模型性能统计数据的影响最小(R=0.67 与 0.70,赤池信息量准则 2095 与 2088)。

结论

总结电子病历围手术期风险指标可有效预测胰十二指肠切除术人群中患者水平的成本变化,与个体合并症一样。自动化电子病历数据提取可以扩大可用于回顾性分析的患者人群,而无需手动数据提取所需的人力和财政资源增加。

相似文献

本文引用的文献

8
Quality of Big Data in health care.医疗保健领域大数据的质量。
Int J Health Care Qual Assur. 2015;28(6):621-34. doi: 10.1108/IJHCQA-07-2014-0080.
9
The number of subjects per variable required in linear regression analyses.线性回归分析中每个变量所需的样本量。
J Clin Epidemiol. 2015 Jun;68(6):627-36. doi: 10.1016/j.jclinepi.2014.12.014. Epub 2015 Jan 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验