Suppr超能文献

- 缺乏 T 细胞的急性淋巴细胞白血病通过增强的复制应激对 CHK1 抑制敏感。

-Deficient T-cell Acute Lymphoblastic Leukemia Is Sensitized to CHK1 Inhibition through Enhanced Replication Stress.

机构信息

Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom.

MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.

出版信息

Cancer Discov. 2020 Jul;10(7):998-1017. doi: 10.1158/2159-8290.CD-19-0789. Epub 2020 Apr 29.

Abstract

Loss-of-function mutations of , the enzymatic component of PRC2, have been associated with poor outcome and chemotherapy resistance in T-cell acute lymphoblastic leukemia (T-ALL). Using isogenic T-ALL cells, with and without CRISPR/Cas9-induced EZH2-inactivating mutations, we performed a cell-based synthetic lethal drug screen. EZH2-deficient cells exhibited increased sensitivity to structurally diverse inhibitors of CHK1, an interaction that could be validated genetically. Furthermore, small-molecule inhibition of CHK1 had efficacy in delaying tumor progression in isogenic EZH2-deficient, but not EZH2 wild-type, T-ALL cells , as well as in a primary cell model of PRC2-mutant ALL. Mechanistically, EZH2 deficiency resulted in a gene-expression signature of immature T-ALL cells, marked transcriptional upregulation of , increased replication stress, and enhanced dependency on CHK1 for cell survival. Finally, we demonstrate this phenotype is mediated through derepression of a distal PRC2-regulated enhancer. In conclusion, we highlight a novel and clinically exploitable pathway in high-risk EZH2-mutated T-ALL. SIGNIFICANCE: Loss-of-function mutations of PRC2 genes are associated with chemotherapy resistance in T-ALL, yet no specific therapy for this aggressive subtype is currently clinically available. Our work demonstrates that loss of EZH2 activity leads to MYCN-driven replication stress, resulting in increased sensitivity to CHK1 inhibition, a finding with immediate clinical relevance..

摘要

EZH2 酶复合物的酶成分( )功能丧失突变与 T 细胞急性淋巴细胞白血病(T-ALL)的不良预后和化疗耐药相关。使用具有和不具有 CRISPR/Cas9 诱导的 EZH2 失活突变的同基因 T-ALL 细胞,我们进行了基于细胞的合成致死药物筛选。EZH2 缺陷细胞对结构多样的 CHK1 抑制剂表现出更高的敏感性,这种相互作用可以通过遗传验证。此外,小分子抑制 CHK1 在同基因 EZH2 缺陷而非 EZH2 野生型 T-ALL 细胞中的肿瘤进展中具有疗效,并且在 PRC2 突变 ALL 的原代细胞模型中也具有疗效。从机制上讲,EZH2 缺失导致不成熟 T-ALL 细胞的基因表达特征,明显上调转录因子 ,增加复制应激,并增强对 CHK1 的依赖性以维持细胞存活。最后,我们证明这种表型是通过去抑制远端 PRC2 调节的增强子介导的。总之,我们强调了在高风险 EZH2 突变 T-ALL 中一种新的、具有临床可开发性的途径。意义:PRC2 基因的功能丧失突变与 T-ALL 的化疗耐药相关,但目前临床上尚无针对这种侵袭性亚型的特定治疗方法。我们的工作表明,EZH2 活性的丧失导致 MYCN 驱动的复制应激,从而导致对 CHK1 抑制的敏感性增加,这一发现具有直接的临床意义。

相似文献

1
-Deficient T-cell Acute Lymphoblastic Leukemia Is Sensitized to CHK1 Inhibition through Enhanced Replication Stress.
Cancer Discov. 2020 Jul;10(7):998-1017. doi: 10.1158/2159-8290.CD-19-0789. Epub 2020 Apr 29.
2
EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells.
Theranostics. 2021 Jan 1;11(4):1795-1813. doi: 10.7150/thno.48101. eCollection 2021.
3
EZH2 mutations and promoter hypermethylation in childhood acute lymphoblastic leukemia.
J Cancer Res Clin Oncol. 2016 Jul;142(7):1641-50. doi: 10.1007/s00432-016-2174-8. Epub 2016 May 11.
5
Ezh2 loss propagates hypermethylation at T cell differentiation-regulating genes to promote leukemic transformation.
J Clin Invest. 2018 Aug 31;128(9):3872-3886. doi: 10.1172/JCI94645. Epub 2018 Aug 6.
8
Polycomb repressive complex 2 (PRC2) pathway's role in cancer cell plasticity and drug resistance.
Funct Integr Genomics. 2025 Mar 6;25(1):53. doi: 10.1007/s10142-025-01563-8.
9
CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2.
J Clin Invest. 2018 Jan 2;128(1):446-462. doi: 10.1172/JCI90793. Epub 2017 Dec 4.
10
Epigenetic vulnerabilities of leukemia harboring inactivating EZH2 mutations.
Exp Hematol. 2024 Feb;130:104135. doi: 10.1016/j.exphem.2023.11.009. Epub 2023 Dec 10.

引用本文的文献

2
Native stem cell transcriptional circuits define cardinal features of high-risk leukemia.
J Exp Med. 2025 Apr 7;222(4). doi: 10.1084/jem.20231349. Epub 2025 Feb 19.
3
3D chromatin hubs as regulatory units of identity and survival in human acute leukemia.
Mol Cell. 2025 Jan 2;85(1):42-60.e7. doi: 10.1016/j.molcel.2024.11.040. Epub 2024 Dec 23.
4
Lineage-specific canonical and non-canonical activity of EZH2 in advanced prostate cancer subtypes.
Nat Commun. 2024 Aug 8;15(1):6779. doi: 10.1038/s41467-024-51156-5.
5
Epigenetic targeting of PGBD5-dependent DNA damage in SMARCB1-deficient sarcomas.
bioRxiv. 2025 Mar 7:2024.05.03.592420. doi: 10.1101/2024.05.03.592420.
6
Key candidate genes and pathways in T lymphoblastic leukemia/lymphoma identified by bioinformatics and serological analyses.
Front Immunol. 2024 Feb 23;15:1341255. doi: 10.3389/fimmu.2024.1341255. eCollection 2024.
8
9
Combined inhibition of PARP and EZH2 for cancer treatment: Current status, opportunities, and challenges.
Front Pharmacol. 2022 Oct 3;13:965244. doi: 10.3389/fphar.2022.965244. eCollection 2022.
10
Combined inhibition of EZH2 and ATM is synthetic lethal in BRCA1-deficient breast cancer.
Breast Cancer Res. 2022 Jun 17;24(1):41. doi: 10.1186/s13058-022-01534-y.

本文引用的文献

1
PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia.
J Exp Med. 2018 Dec 3;215(12):3094-3114. doi: 10.1084/jem.20180570. Epub 2018 Nov 7.
2
Synthetic lethal therapies for cancer: what's next after PARP inhibitors?
Nat Rev Clin Oncol. 2018 Sep;15(9):564-576. doi: 10.1038/s41571-018-0055-6.
3
Polycomb repressive complex 2 haploinsufficiency identifies a high-risk subgroup of pediatric acute myeloid leukemia.
Leukemia. 2018 Aug;32(8):1878-1882. doi: 10.1038/s41375-018-0187-9. Epub 2018 Jun 27.
4
Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place.
Cancer Discov. 2018 May;8(5):537-555. doi: 10.1158/2159-8290.CD-17-1461. Epub 2018 Apr 13.
5
Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors.
Cancer Cell. 2018 Feb 12;33(2):274-291.e8. doi: 10.1016/j.ccell.2018.01.006.
6
The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia.
Nat Genet. 2017 Aug;49(8):1211-1218. doi: 10.1038/ng.3909. Epub 2017 Jul 3.
7
Replication Catastrophe: When a Checkpoint Fails because of Exhaustion.
Mol Cell. 2017 Jun 15;66(6):735-749. doi: 10.1016/j.molcel.2017.05.001.
8
Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
N Engl J Med. 2017 Aug 10;377(6):523-533. doi: 10.1056/NEJMoa1706450. Epub 2017 Jun 4.
9
Targeting the ATR-CHK1 Axis in Cancer Therapy.
Cancers (Basel). 2017 Apr 27;9(5):41. doi: 10.3390/cancers9050041.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验