Suppr超能文献

深度学习辅助肺结节或肿块计算机辅助检测的胸部 X 光片最佳矩阵大小。

Optimal matrix size of chest radiographs for computer-aided detection on lung nodule or mass with deep learning.

机构信息

Department of Biomedical Engineering, Asan Institute of Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.

Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Center 88, Olympic-ro 43-gil, Seoul, South Korea.

出版信息

Eur Radiol. 2020 Sep;30(9):4943-4951. doi: 10.1007/s00330-020-06892-9. Epub 2020 Apr 29.

Abstract

OBJECTIVES

To investigate the optimal input matrix size for deep learning-based computer-aided detection (CAD) of nodules and masses on chest radiographs.

METHODS

We retrospectively collected 2088 abnormal (nodule/mass) and 352 normal chest radiographs from two institutions. Three thoracic radiologists drew 2758 abnormalities regions. A total of 1736 abnormal chest radiographs were used for training and tuning convolutional neural networks (CNNs). The remaining 352 abnormal and 352 normal chest radiographs were used as a test set. Two CNNs (Mask R-CNN and RetinaNet) were selected to validate the effects of the squared different matrix size of chest radiograph (256, 448, 896, 1344, and 1792). For comparison, figure of merit (FOM) of jackknife free-response receiver operating curve and sensitivity were obtained.

RESULTS

In Mask R-CNN, matrix size 896 and 1344 achieved significantly higher FOM (0.869 and 0.856, respectively) for detecting abnormalities than 256, 448, and 1792 (0.667-0.820) (p < 0.05). In RetinaNet, matrix size 896 was significantly higher FOM (0.906) than others (0.329-0.832) (p < 0.05). For sensitivity of abnormalities, there was a tendency to increase sensitivity when lesion size increases. For small nodules (< 10 mm), the sensitivities were 0.418 and 0.409, whereas the sensitivities were 0.937 and 0.956 for masses. Matrix size 896 and 1344 in Mask R-CNN and matrix size 896 in RetinaNet showed significantly higher sensitivity than others (p < 0.05).

CONCLUSIONS

Matrix size 896 had the highest performance for various sizes of abnormalities using different CNNs. The optimal matrix size of chest radiograph could improve CAD performance without additional training data.

KEY POINTS

• Input matrix size significantly affected the performance of a deep learning-based CAD for detection of nodules or masses on chest radiographs. • The matrix size 896 showed the best performance in two different CNN detection models. • The optimal matrix size of chest radiographs could enhance CAD performance without additional training data.

摘要

目的

探究深度学习辅助计算机辅助检测(CAD)胸部 X 线片结节和肿块的最佳输入矩阵大小。

方法

我们回顾性地从两个机构收集了 2088 例异常(结节/肿块)和 352 例正常胸部 X 线片。三位胸部放射科医生共勾画了 2758 个异常区域。使用 1736 例异常胸部 X 线片进行训练和调整卷积神经网络(CNN)。其余 352 例异常和 352 例正常胸部 X 线片作为测试集。选择两种 CNN(Mask R-CNN 和 RetinaNet)来验证胸部 X 线片的平方不同矩阵大小(256、448、896、1344 和 1792)的效果。为了进行比较,获得了刀切无应答者接收者操作特征曲线的性能指标(FOM)和敏感性。

结果

在 Mask R-CNN 中,矩阵大小为 896 和 1344 的 FOM(分别为 0.869 和 0.856)显著高于 256、448 和 1792(0.667-0.820)(p<0.05),用于检测异常。在 RetinaNet 中,矩阵大小 896 的 FOM(0.906)显著高于其他矩阵(0.329-0.832)(p<0.05)。对于异常的敏感性,随着病变大小的增加,敏感性呈上升趋势。对于小的结节(<10mm),敏感性分别为 0.418 和 0.409,而肿块的敏感性分别为 0.937 和 0.956。在 Mask R-CNN 中,矩阵大小为 896 和 1344,以及在 RetinaNet 中,矩阵大小为 896 的敏感性均显著高于其他矩阵(p<0.05)。

结论

使用不同的 CNN,矩阵大小 896 对各种大小的异常具有最高的性能。胸部 X 线片的最佳矩阵大小可以在不增加额外训练数据的情况下提高 CAD 的性能。

关键点

  • 输入矩阵大小显著影响基于深度学习的 CAD 检测胸部 X 线片结节和肿块的性能。

  • 在两种不同的 CNN 检测模型中,矩阵大小 896 表现最佳。

  • 胸部 X 线片的最佳矩阵大小可以增强 CAD 性能,而无需额外的训练数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验