Cho Yongwon, Hwang Sung Ho, Oh Yu-Whan, Ham Byung-Joo, Kim Min Ju, Park Beom Jin
Department of Radiology Korea University Anam Hospital Seoul Republic of Korea.
Department of Psychiatry Korea University Anam Hospital Seoul Republic of Korea.
Int J Imaging Syst Technol. 2021 Sep;31(3):1087-1104. doi: 10.1002/ima.22595. Epub 2021 May 13.
We aimed to evaluate the performance of convolutional neural networks (CNNs) in the classification of coronavirus disease 2019 (COVID-19) disease using normal, pneumonia, and COVID-19 chest radiographs (CXRs). First, we collected 9194 CXRs from open datasets and 58 from the Korea University Anam Hospital (KUAH). The number of normal, pneumonia, and COVID-19 CXRs were 4580, 3884, and 730, respectively. The CXRs obtained from the open dataset were randomly assigned to the training, tuning, and test sets in a 70:10:20 ratio. For external validation, the KUAH (20 normal, 20 pneumonia, and 18 COVID-19) dataset, verified by radiologists using computed tomography, was used. Subsequently, transfer learning was conducted using DenseNet169, InceptionResNetV2, and Xception to identify COVID-19 using open datasets (internal) and the KUAH dataset (external) with histogram matching. Gradient-weighted class activation mapping was used for the visualization of abnormal patterns in CXRs. The average AUC and accuracy of the multiscale and mixed-COVID-19Net using three CNNs over five folds were (0.99 ± 0.01 and 92.94% ± 0.45%), (0.99 ± 0.01 and 93.12% ± 0.23%), and (0.99 ± 0.01 and 93.57% ± 0.29%), respectively, using the open datasets (internal). Furthermore, these values were (0.75 and 74.14%), (0.72 and 68.97%), and (0.77 and 68.97%), respectively, for the best model among the fivefold cross-validation with the KUAH dataset (external) using domain adaptation. The various state-of-the-art models trained on open datasets show satisfactory performance for clinical interpretation. Furthermore, the domain adaptation for external datasets was found to be important for detecting COVID-19 as well as other diseases.
我们旨在评估卷积神经网络(CNN)在使用正常、肺炎和2019冠状病毒病(COVID-19)胸部X光片(CXR)对COVID-19进行分类方面的性能。首先,我们从开放数据集收集了9194张CXR,并从韩国大学安岩医院(KUAH)收集了58张。正常、肺炎和COVID-19 CXR的数量分别为4580张、3884张和730张。从开放数据集中获得的CXR以70:10:20的比例随机分配到训练集、调整集和测试集。为了进行外部验证,使用了经放射科医生通过计算机断层扫描验证的KUAH数据集(20张正常、20张肺炎和18张COVID-19)。随后,使用DenseNet169、InceptionResNetV2和Xception进行迁移学习,通过直方图匹配使用开放数据集(内部)和KUAH数据集(外部)来识别COVID-19。梯度加权类激活映射用于可视化CXR中的异常模式。使用三个CNN的多尺度和混合COVID-19Net在五折交叉验证中的平均AUC和准确率,使用开放数据集(内部)时分别为(0.99±0.01和92.94%±0.45%)、(0.99±0.01和93.12%±0.23%)以及(0.99±0.01和93.57%±0.29%)。此外,在使用域适应对KUAH数据集(外部)进行五折交叉验证时,最佳模型的这些值分别为(0.75和74.14%)、(0.72和68.97%)以及(0.77和68.97%)。在开放数据集上训练的各种先进模型在临床解释方面表现出令人满意的性能。此外,发现对外部数据集进行域适应对于检测COVID-19以及其他疾病很重要。